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Summary

Simulation of high speed propulsion systems may be divided into two categories, nonlinear and linear. The
nonlinear simulations include simulations based on computational fluid dynamics (CFD) methodologies.
These simulations tend to provide high resolution results that show the fine detail of the flow. Consequently,
the simulations are large, numerically intensive, and run much slower than real-time. Linear models are
generally used during the preliminary stages of control design. These simplistic models often run at or near
real-time but do not always capture the detailed dynamics of the plant. Under a grant sponsored by the
NASA Lewis Research Center, Cleveland, Ohio, a new method has been developed that can be used to
generate improved linear models for control design from steady-state CFD results. This method provides a
small perturbation model that can be used for control applications and real-time simulations. It is important
to note the utility of the modeling procedure; all that is needed to obtain a linear model of the propulsion
system is the spatial step and steady-state operating conditions from a CFD simulation or experiment. This
research represents a beginning step in establishing a bridge between the controls discipline and the CFD
discipline so that the control engineer is able to effectively use CFD results in control system design and
analysis.

1 Introduction

The development of inlet models for high speed propulsion systems is important because of the current
interest in high speed air-breathing propulsion systems, such as the High Speed Civil Transport (HSCT)
and the High Speed Research (HSR) project. Modeling of these systems is difficult because of their complex
physical processes which are represented by nonlinear partial differential equations (PDE). Without a good
model the control engineer cannot develop a good control design. To design these control systems, an
adequate model of the entire system or particular subsystem is necessary; typically these models are either
based on traditional propulsion control models or CFD models.



Traditional propulsion control models typically utilize a large lumping technique for the spatial derivatives
so that the propulsion system is represented by a set of nonlinear ordinary differential equations (ODE).
These equations are often linearized about a steady-state point so that the control model is linear. Methods
based on this linear ODE approach have been developed for propulsion systems, some of which are: the Cole-
Willoh model {1, the Martin model [2], the Barry models [3], circuit models [4], and the Laplace transform
of the Green’s function method [5] [6]. Unfortunately these models are often difficult to implement and do
not always capture the nonlinear dynamics of the system.

Accurate nonlinear models of complex flows are usually obtained from CFD codes [7] [8]. These models
can to some degree predict the behavior of large perturbations in the flow field, including unstart, buzz,
turbulence, boundary layer growth, etc.. Typically these CFD models are based on a large number of nodes
which can then be used in a finite difference method to produce a large system of nonlinear equations.
However due to their nonlinearity and large size, these models require large amounts of computer time and
therefore are not suitable for controls analysis and design.

An effective propulsion system model for control system design must adequately capture the dynamics
of the system but also be of small order. CFD models fulfill the first requirement, and traditional models
fulfill the second requirement. Therefore, a method that is based on both ideas might provide a reasonable
model for controls applications. This paper develops a method for the direct use of a linearized CFD method
combined with model reduction to model the internal flow of a propulsion system.

In this paper, the quasi-one-dimensional inviscid flow of an axisymmetric inlet is the propulsion system
of primary interest. The next section describes the CFD model development which is the basis for the linear
model of the inlet; this includes the governing equations, the development of the split flux model, and the
development of the boundary conditions. Then in section three, the linear model is derived by implementing
linearized methods of the previous section; various inputs and outputs are also developed in this section. A
summary of the model reduction method and calculation of the associated error bounds follow in sections
four and five. In section six, an application of the method is illustrated on a mixed compression axisymmetric
inlet for a variety of inputs and outputs, and a conclusion follows in section seven.

2 CFD Model Development

2.1 Governing Equations

The dynamics of an internal filow propulsion system are often represented by the nonviscous quasi-one-
dimensional Euler equations. The conservative form of these equations is defined by Hirsch [9] as:

Conservation of Mass:

d(pA) | I(pud) _
5 T =0 (2.1)

Conservation of Momentum: \
d(pud) O(pP+p)A _ B8A
ot + oz P (2.2)

Conservation of Energy:

O(pEA) | 9(puHA) _

= = 0 (2.3)

where H = (E + %) and A represents the cross-sectional area. If the partial derivative terms are expanded,
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the area terms can be extracted and the conservative form of the equations can be rewritten as:

ow  OF (W) .,
T + 3z =G (W) (24)
where the vector components, @, F (@), and G (%), are defined below.
State vector:
p p
T=|pu|=|m (25)
pE €
2
¢ is defined as, e =pE =p (e + %) , and e is the internal energy per unit mass.
Fluzx vector:
ou
F(u)=| pu®+p (2.6)
u(e +p)
Source vector: _
_1fpea 04
AV T
cw)=| _1[,94, 294 (2.7)
A ot +ou Oz
-_1. .a_A + ( + ) B_A
AN AR N

If the cross-sectional area, A, does not vary with time, then the %té terms may be eliminated from the source
2
€— %), and the flux vector may be

vector. For a perfect gas, the pressure can be defined as p = (y — 1) (

[ ]

m

rewritten in the following variables.

F(@)=| (y-1e+ (3—7)";—: (2.8)

3
yem m
—— —1) —=

The derivative o

f the flux vector with respect to z can be represented in quasi-linear form by replacing
OF (%) Ly, j2%

where J is the Jacobian of the flux vector and defined below.

Oz oz’
i 1

0 1 0

OF (W m\? m
J= a%»)= %(7—3)(;) (3—7); v-1 (2.9)
3 2

_n(my _xEm r_3,. _pnfm ym
L{h l)(P) pz} {P 301 )(p)} P



The substitution of (2.9) into equation (2.4) results in the following partial differential equation,

ow . 0uw —
7+JE_G('U) (2.10)
The characteristics, or local eigenvalues, of the Jacobian are equal to:
/\1 = u
A2 = u+tec (2.11)
A3 = u-—c

Equation (2.10) can be transformed into a system of ordinary differential equations by replacing the spatial
derivative term with a finite difference expression; then the system of equations may be integrated numerically
to obtain the flow field solution. In order for the overall system to be numerically stable, the direction of
the characteristics (2.11) must be taken into account when the spatial derivative is replaced. When the flow
is_supersonic, the characteristics are all positive, and one finite difference expression can be used for the
—3% term. If the flow is subsonic, the signs of the characteristics are mixed, and a single finite difference
o d -~
expression for o will create an unstable model. If equation (2.10) is divided according to the sign of the
characteristics, Fen a different finite difference expression for the spatial derivative can be used for each of
the positive and negative terms. The next section illustrates how to split the system into its positive and
negative parts.

2.2 Split Flux Model

The split flux method detailed in references [9] and [10] is summarized in this section. The split flux
method separates the flux vector into subvectors which correspond to the positive and negative characteristics
of the Jacobian. The split flux model can be written as the following equation,

9%, OF* (W) | OF (¥)

5 P e G(%) (2.12)
Since F (%) is a homogenous function of degree one in ’, it can be written as:
F(w)=Jv (2.13)
and the positive and negative subvectors can be calculated from the following:
FE(?)=J*% (2.14)
Substitution of equation (2.14) into the split flux model equation (2.12) produces the following result.
o O 0T G (%) (2.15)
ot oz Oz
The positive and negative Jacobians satisfy J = J* + J~ and are calculated from:
J* = KA*K™! (2.16)
The right eigenvectors of J are defined as:
1 pc —pc
K=| 4 2% (u+¢) —2% (u—c) (2.17)
2 2 2
5 £ (rersd) £(5wesdy).




and the matrices AT and A~ can be defined as:

1 (u[u]) 0 0
Af = 0 lutctlutc|) 0 (2.18)
0 0 tu—cxlu—cl)

There are a variety of splittings that can be used for A. As long as the characteristics of At and A~ satisfy

A = A+ + A-, the splitting is valid. Once the system, equation (2.15), is split in'g its positive and negative
7]

Jacobians, a different finite difference expression can be used to approximate —Z— for each Jacobian. The
spatial derivative associated with the positive Jacobian is discretized with a baciward difference operator:

B Ti-Tia
1 — 1 1—
Frake Az (2.19)

and the spatial derivative associated with the negative Jacobian is discretized with a forward difference
operator:
37,‘ _ —1_1.’,'.{..1 - ﬂ'i (2 20)
dr Az; )
Axz; denotes the spatial step and 7 denotes the grid point. The above substitutions are put into equation
(2.15) which results in the following equation for each grid point of the system.

o L (Wi Wi (Wi — W —
5 T (T) i (T) =G0 @2)
This can be simplified and rewritten as:
?i J+ E)1'—1 + — ?i - -171'+1 . —
% an T (I =J7) 2ot A G (W) (2.22)

Equation (2.22) represents the dynamics of the internal grid points of the CFD model; there are still boundary
conditions at the cowl lip and compressor face that must be satisfied. These boundary conditions are
developed in the next section.

2.3 Boundary Conditions

Boundary conditions are required at the cowl lip and compressor face of the inlet CFD model, because
the finite difference expressions at these grid points have terms which lie outside of the computational
domain. Boundary conditions can be categorized as either physical or numerical. Numerical boundary
conditions correspond to characteristics leaving the domain, and physical boundary conditions correspond
to characteristics entering the domain. Therefore the numerical boundary conditions can be determined
from the interior grid points of the computational domain, but the physical boundary conditions must be
specified. There are a variety of methods that can be used for the treatment of the boundary conditions;
compatibility relations with time-differenced physical boundary conditions is the one implemented here from
Hirsch [9]. With this method, the incoming characteristics are set equal to zero so that only information
transmitted from the interior is maintained. The general development for the treatment of the boundary
conditions as taken from [9] follows.

If the governing PDE, equation (2.4) from section 2.1,

0w |\ FE) _ga)

ot or



is rewritten in terms of the characteristic variables for the time derivative, the incoming characteristics can
be replaced by the physical boundary conditions. Equation (2.23) shows the characteristic variables, W,

v—1
and equation (2.24) shows the transformation between the conservative variables, %', and the characteristic
variables. E B KE 220
ot~ ot ’
The result of applying transformation (2.24) to equation (2.10) is shown in the equation below.
ow ow -
K 'y +J . = G(d)
(2.25)
ow 1,07 =
B +KJ B K'G(W)
Now the characteristic variables can be split into the incoming physical characteristics, w7, and the outgoing
numerical characteristics, WV .
wP K-1F - Kk-1P
% + ( )N J%l _| ! )N G (%) (2.26)
w¥ (K1) ? (K1)

The partitioning of the K matrix shown here will be discussed in Section 3.3.1. With this boundary condition
method, information transmitted by the characteristics to the interior is discarded. Therefore, the incoming
characteristics are set equal to zero by replacing them with the physical boundary condition, By. = 0, as
shown in equation (2.27).

Bbc

vV

9
at

0w 0 -,
J—g’;— = [ ey ] G(®) (2.27)

0
+ N
[ (&7

8By .., OBy 0

Converting back to conservative variables and replacing 5 with 7 o yields,
7 %ﬁ + J% = G(7) (2.28)
(&)Y 5 (K=" (&)™

Now the implementation of the time-differenced boundary condition is performed; this is done by taking the
derivative of By, with respect to time.

8By _ OBy W
ot ~ 97 ot
I -in aB o - n
Bpe (™) = Bpe (B") = -3?“(1, o 2m) (2.29)
Bbc (—,Em+1) — Bbc (?n) + aag_:’f (Tn-&-l _ —,‘Tn)



Now By, (W™*1) is set equal to zero, because it has replaced the incoming characteristic.

—n aBbc —n —n
0 = Bp(w )+-5_E,—(u 1w
- n aB C (—In n
—Bp. (W") = an,(u +_7n) (2.30)
—ny OBy 0W
~Bu (¥7) = 5
Substitute the last line of (2.30) into equation (2.28).
B
6a—b> [ 0 '1—;,’ "Bbc
(K7) (&™) (K1) G(w)
Let K, be defined as: _
aBbc
K= v (2.32)
| (7
and K> be defined as: } .
0
Ko = N (2.33)
| (BT ]
Substitute (2.32) and (2.33) into equation (2.31) and simplify.
— — —By.
ow K;lsz?i =Kj! N" (2.34)
ot Ox (K1) G (%)

This is the boundary equation used at the cowl lip and compressor face. Since the incoming characteristics
have been zeroed out and replaced with physical boundary conditions, the spatial derivative can be replaced
with one finite difference expression. At the cowl lip the spatial derivative is replaced with a forward
difference equation (2.20), and at the compressor face the spatial derivative is replaced with a backward
difference equation (2.19). The next section develops the linear model using the split flux technique from
section 2.2 and the boundary condition method from this section.

3 Linear Model Development

3.1 Small Perturbation Model

For a small perturbation model, the states, inputs, and outputs of a nonlinear system are assumed to
be the combination of a steady-state value and a small time dependent perturbation as shown In equations
(3.1) through (3.3) below.

States:

X=X, +6X (3.1)

Inputs:

U =U.+6U0 (3.2)



Outputs:

Y=Y,+6Y (3.3)

The small perturbation model is only valid when operating within a small region around the steady-state
value; once outside this region, the linear model is no longer an accurate representation of the nonlinear
system. In other words, the farther the nonlinear model moves away from the operating point, the less
accurate the linear dynamic response.

In general the small perturbation model will have as many grid points as the CFD model. Because of
the large number of equations in the CFD based model, it is convenient to describe the small perturbation
model in state space format; this also facilitates the placement of the inputs and outputs for the system.

d
E&Y = AS§X +BsU

§Y = C§X +DsU (3.4)
The A, B, C, and D matrices are defined as follows:
A = system mairiz
B = input matriz (3.5)
C = output matriz
D = input/output matriz

The data needed for the calculation of these matrices is obtained from a steady-state operating point of the
propulsion system model. Contents of these matrices are developed in the following sections.

3.2 System Matrix

The system matrix for the small perturbation model is generated by applying equation (2.22) to each grid
point of the propulsion system with the Jacobian evaluated at a steady-state operating point. The source
vector may then be rewritten in quasilinear form, G (%) = Js% , and evaluated at the same operating
point. The Jacobian of the area source vector is shown below.

1) 04
0 - (z) o 0
Jg = BGQ?) = _m_2 24 _(2m) 04 0
ou p2A ) Ox pA ] O6x
3 2
iy (™) 104§ e 3 (m) (124 (ym) 04
{ (v l)(p) t p2}A6:L' { p+2(7 1)(p)}ABz (pA)ax
) (3-6)
With the above definition, equation {2.22) becomes:
96 R _\ o0 _6Win
e Ji As T (JF = J7) Az T ij = Js, 67, (3.7)
Equation (3.7) can be written in the following compact form:
%65\? =A§X (3.8)
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with 6 X defined as:

U3 (3.9)

and A is defined as:

Jbe, Joes 0
=% & (- +T5) s 5 0
A=l 0 el A (~I I+ s, —2ds O (3.10)
0 3.12_: Jf :
L : : 0 Joen_y  Jben

The size of the system matrix is 3N by 3N where N is the total number of grid points. There may be
some confusion between the system eigenvalues, which are the eigenvalues of the A matrix, and the local
eigenvalues, which are the characteristics at each lump of the system. A continuous time linear system is
stable when all of the eigenvalues of the system matrix have negative real parts. When the spatial derivatives
of equation (2.15) are discretized properly, the small perturbation model is stable.

The procedure for the development of the system matrix must be modified when the boundary conditions
are taken into consideration. In general, the cowl lip boundary condition is supersonic, represented by Jpc,
and Jyc,, and the compressor face boundary condition is subsonic, represented by Joc, and Jpey_,. These
boundary conditions are included as modifications to the system matrix at the first and last grid points.
They are implemented following the method developed previously and will be discussed at length in the
following section where the input matrix term, B, is derived.

3.3 Input Matrix

3.3.1 Downstream Static Pressure

When the flow at the compressor face is subsonic (i.e. u < c), there are two numerical boundary conditions
and one physical boundary condition. The numerical boundary conditions are associated with the positive
characteristics, ¢ and u+c, and the physical boundary condition is associated with the negative characteristic,
u — ¢. The implementation of the downstream static pressure as a boundary condition input [9] is derived
below.

To begin with, take the inverse of (2.17), and then partition the matrix following the procedure from
section 2.3.

1 acpeeme Gz (1)
N 1 12— L c—=(y=1u y=1
K-l (&H" 1 _| BO-De ue] pc pe (3.11)




Here, (K‘I)N is the first two rows of K~! and (K’I)P is the last row of K~!. The physical boundary

condition equation is:
Bbc(?) = P — Pinput

(3.12)

where p;npyt is the prescribed boundary condition input, and p is rewritten in terms of the state variables p,

m, and e. Equation {3.12) then becomes the following:
m2
Bu(T) = (r=1) (= 5 ) ~ i

Taking the partial derivative of By.(%') with respect to @ yields,

9By _ [0 O Op|_[(-1)m* (y—lm (y=1)
0w | 9p Om Oe 202 Y
Therefore, for the downstream static pressure boundary condition, Kj (2.32) is defined as:
e L =
1 c—(y-1u v-1
Kk-1H)Y L(v-1)u® —uc] —
K = (&) = -1 - pe pe pc
9By, (y=1)m? (r-Dm
| 07 | 2p? p (r—-1) ]
and K (2.33) is defined as:
TSV = TEE R
- 1 c—(y—1Nu v-1
k-1 1im— a2 — uel — it
Ky = ( ) — [2 (y-Du uc] e o pc
0 0 0 0

From equation (2.34) the compressor face boundary condition may be described as follows.

ot

= K;! [ (&

—Bge

YW a(@w) ]

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

For this boundary condition to be implemented in the small perturbation model, it must be linearized as

shown below.
06U N
ot

6By is calculated as:

and can be rewritten as:

6Bbc =

+K1_1K2JN

U N
z

6By = OBe g +

= Kl—l

—6By,

aBbc

v

(r=Ym* (y-1lm

20

10

OPinput
Winput T

(K~ Js, 6 N }

(’)’ - 1) ] 6? - 6p'inpu¢

(3.18)

(3.19)

(3.20)



Now substituting equation (3.20) into equation (3.18) and replacing Béax

—
UN

06w N 1 U N — 86U N-1
5 = —K{ K)Jn ( Az )
(=" s,
+K;7! 0 0 N
_(7—1)m (7—1)m _(7_1)
L 2p* P
0
'}'-[{1_1 0 6pinput
1
I
Equation (3.22) is used to modify the system matrix, (3.10), at the last grid point.
aéT‘L‘)N — —_ -1 0
T = Joen S UN + Joen_ 1 0 & N=1 + K] (1) 6Dinput
The terms for Jpcp, Joey_,» and K 1 are defined as follows:
_\N
J B _K1_1K2JN +K—1 (K 1) JSN
e T A ' (y-Dm? (y-1)m
- 2P2 P - ('7 - 1)

J _ KT1KoJn

ben—y = A:z:i
-1

(&H"

Ki'=| o o0 o

The terms for the input matrix, B, are obtained from the coefficient on 6pinput from equation (3.22).

9p Om Oe

3.3.2 Downstream Mach Number

with equation (2.19) yields:

(3.21)

(3.22)

(3.23)

As was the case for the downstream pressure, the input matrix for the downstream Mach number fol-
lows directly from the implementation of the compressor face boundary condition. The physical boundary

condition equation is:

where M is defined as:

Rewrite M in terms of p, m, and ¢,

Bbc(?) =M - Minput

M=

ole

m v2msgn (p)

M=

I V1(2ep () = 1) — ym? + m?)
ﬁ“'” (-%)

11
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(3.25)

(3.26)



and follow the same procedure that was used for the downstream pressure input. Equation (3.27) is used to
modify the system matrix at the last grid point.

— 0
3531: N o JoenSTN + Joey_ 6T N1 + K { 0 } § Mimput (3.27)
The terms for Jp.,, and Joc,_,, and K| 1 are deﬁned as follows:
_I\N
r _ _KI—IK2JN +K—l (K 1) JSN
T B Y| M oM oM
dp om e
_ Kl—leJN
Joer_y = Az, (3.28)
-1
o (x-)"
Ki'=| oM oM oM
8p Om Oe
and %—AZ, %J-\-T:—, and %—A: are shown below.
M V2emy/y(2ep(y 1) — ym® + m?) sgn (p)
dp v(2ep — m2)* (1 —-+)
oM _ 2v/2¢ || (3.29)
om (2ep — m2) /¥ Rep(y — 1) — ym?% + m?) '
M V2my/y(2ep(y —1) — ym?Z + m?)|g|

3 v(2ep —m2)% (1 - )

The terms for the input matrix are obtained from the coefficient on §M;npy: from equation (3.27).
3.3.3 Downstream Corrected Massflow

Again, the input matrix for the downstream corrected massflow follows directly from the implementation
of the compressor face boundary condition. The physical boundary condition equation is:

Bbc(ﬂ') =mc - Thcv‘.nput (3’30)
where m, is defined as: I
m.=m A__t& 3.31
‘ P V71 (3:31)
Rewrite m, in terms of p, m, and ¢,
1
\/257,:(7 - 1) = v*m? + 2ym? —m? (2€w+ m? (1-9)\1-~
. YRT v (2ep — m?)
= V2Aymp,; sgu (p) (3.32)

(2evp+m2(1—7))(v—-1)
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and follow the same procedure that was used for the downstream pressure input. Equation (3.33) is used to
modify the system matrix at the last grid point.

— 0
85; == chnéﬂ’N + ch;v-l&?N—l + I{‘l_1 [ 0 ] 6 mCiﬂP‘ut (333)
1
The terms for Jocy, Jocy.,, and Ki° 1 are defined as follows:
1\
I B __KI—IK2JN N K—l (K ) JSN
v T T A 1l ame 9m. _9m.
8p om Oe
K[ 'KoJ
Joen_, = —ﬁﬁ’i (3.34)
-1
. (&)Y
Ki'=| am. 0m. 0me
dp om Oe
8m, @m, am,
and B om’ and e are shown below.
Ome _ V2 Ayemp, sgn (p) var, varg varg
dp (2evp +m? (1 — 7)) (m2 — 2ep) (v — 1)°
om (2e7p +m2(1 — 7)) (2ep — m?) (y— 1)° '
dme _ V2Aympg |p| var varp vars

O (2evp +m2(1—7))° (m? — 2¢p) (v = 1)°

var, = 2evp(y—1)—-m? (¥ —7v+2)

2evp (v — 1) — ¥*m? + 2ym? — m?
7”31

1
2evp+m2(1—7)\1—7
¥ (2ep — m?)

var =

varg

The terms for the input matrix are obtained from the coefficient on & Mcinpy from equation (3.33).

3.3.4 Upstream Mach Number

Following the procedure developed for the downstream boundary condition input, the upstream Mach
number input is implemented in the following manner. When the flow at the cowl lip is supersonic, there are

13



zero numerical boundary conditions and three physical boundary conditions. The three physicaleounda.ry
conditions are associated with the positive characteristics u, u + ¢, and u — ¢. Therefore, (K~!)" =0 and
(K ‘I)P = K~1. The physical boundary condition definition is:

P
Bbc(?) = [ M- Min;mt :| (336)
€
The input is associated with the second characteristic because the third characteristic is needed if the
boundary condition were subsonic, and the first characteristic usually results in a nonsingularity for equation
(2.31). Minput is the prescribed boundary condition input, and M is replaced in terms of the state variables
p, m, and ¢. Take the partial derivative of By.(’) with respect to o’

1 0 0
0By | OM OM oM
5% | % om o (3:37)
0 0 1
. . . aBbc .
Using the previous definitions for K3 and K3, they become K; = 5 and Ko = 0. The cowl lip boundary

condition is represented by the following equation.
0wy T ., [ (x-Y" ¢ (@) }

+ K Ko Jy (3.38)

ot oz ! —Bye

To be implemented in the small perturbation model, equation (3.38) must be linearized as shown in the next
equation.

6%y 1, 06w [ (k)Y s 6y
6By, is calculated as: 9B 9B
_ be o — be .
By, = 7o u + My Minput (3.40)
Now, 6By can be rewritten as:
1 0 0
M O6M oM -
5Bbc = —a; % E 6 u — 6Mmpu,t (341)
0 0 1
Then substitute equation (3.41) into equation (3.39), and replace 3(2'9: L with equation (2.20) .
s _ Uy~ 6
5 L —-K;i 1K2J1 (__—Aa:i 1)
+K! ()" I 5T 3.42
1 _aBbc u 1 ( - )
i ow
0

+K7 | 1 | 6Minput




Equation (3.43) is used to modify the system matrix at the first grid point.

— 0
aéatu N = Joo, 61 + Joe,6 W2 + K7? [ 1 ] 6 Minput (3.43)
0
The terms for Jpe,, Joc,, and K7 1 are defined as follows:
1 0 0
oM oM oM
— Y| == ==
Joor = — K O Om O¢
0 0 1
Jbe, =0 (3.44)
-1
1 0 0
coio | oM oM oM
1. 71 8 Om Oe
0 0 1

The terms for the input matrix are obtained from the coefficient on §Minpu: from equation (3.43).

3.3.5 Upstream Static Temperature

Again, the input matrix for the upstream static temperature input follows directly from the implemen-
tation of the cowl lip boundary condition. The physical boundary condition equation is:

Bbc(T"’) =T- T:input (3.45)
where T is defined as: »
T= R (3.46)
Rewrite T in terms of p, m, and ¢,
=X (r-1) - (3.47)
RV T '

and follow the same procedure that was used for the upstream Mach number input. Equation (3.48) is used
to modify the system matrix at the first grid point.

a‘sg"’ = Joo 6T + ooy 62 + K1 [ 2 ] ST (3.48)
The terms for Jpe,, Joe,, and Ky 1 are defined as follows:
1 0 0
0 0 1
Joey =0 (3.49)
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1 0 0
K1 = oar or or
17| 8p Om O
0 0 1
aTr ar
and -5;,%, and 3 are shown below
ar _ m(P-2+1)-erwpy-1)
dp YRp3
T = m(P-2r+1)
= o (3.50)
a _ (-1
O¢ Rp

The terms for the input matrix are obtained from the coefficient on §T;npy: from equation (3.48).

3.3.6 Downstream Bypass Massflow

Implementation of the downstream bypass massflow input requires that the source terms, Ms, Fs, and
Qs, be added to the right hand side of the governing equations [8] as shown in equation (3.51).

M,
Qg +oF a(f’) _c@)+| B (351)
Qs
The source terms are defined by (3.52) through (3.54) .
Mass Transfer Continuity Term: .
M= 0 (3:52)
Mass Transfer Momentum Term: )
Fs= 'fz%x"l (3.53)
Mass Transfer Energy Term: ‘
Q5= (222) (354)

Here, d—-— is the massflow transferred across the wall of the ith control volume divided by the control
volume ﬁgth in steady state, this is equal to the massflow in the inlet minus the massflow at the cowl lip.

dm =1 — Meowilip (3.55)

But in order to have the bypass massflow, Myypass, as an input to the model, equation (3.55) needs to be
rewritten with this term. Since the massflow is a conserved quantity, it can be expressed as the following:

Meoul lip = mbypa.aa + mcompreuarface (356)
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with this substitution for M.t 1ip equation (3.55) becomes:
d mi = m1 - (mbypa,s.s + mcovnprcaaorface) (357)

Now the source terms for the bypass massflow can be defined as:

1 /1 — Tbypass = Meompressor f

M. - pass compressor face

ST A ( Az; )

Uy mi - Th'lrypaas - mwmpreaaorfacc

Fs = =2 ,

S Y ( Az, ) (3.58)
Q - (Ei +p1') mi - mbypaas - mcornpressor face

s piA; Azx;

and linearized with respect to Myypass -

_ . _ . _}
Mg LAz,
B 5 mbypass = 5FS 6 mbypaas = .Ai:"-;- 6 mbypa,as (359)
—(ei +pi)
L %0s i | pidiAz;

The terms for the input matrix are obtained from the coefficients on & 7ypass-

3.3.7 Throat Bleed Massflow

The throat bleed massflow input is implemented using the same method as for the downstream bypass
massflow input. In this case, the bleed massflow is expressed as:

mcowl lip = mbleed + mcompreaaor face (360)

The source terms for the bleed massflow are defined as:

1 'fni - mbleed - moo'm or face
Me = — press
$ A; ( Az; )
Fs = :'l;li_,1 (’fm - Thbleed ;;?campreasorfa,ce) (361)
Q - (Ei +pi) M — Mpleed — moomprcaaor face
o piA; Ax;
and linearized with respect to Mpieed -
_ 1 _ .
-1
Ms A Az,
B 6 Myleed = | §Fg | 6 Mbleed = U 8 Mpleea (3.62)
s AAz;
— (i +pi)
i oQs ] | piAidzi ]

The terms for the input matrix are obtained from the coefficients on § Mpeed-
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3.4 Output Matrix

3.4.1 Static Pressure

The components of the output matrix, C, for the static pressure response are obtained by linearizing the
static pressure equation:

bp = =bp+=— % —m+ ap& (3.63)

2
1 m m
bp = z(vyv-1|[—=) bp—-(v—-1|—=5)bm+(y—=1)6e
J2 5 (7 )(p) p—(r )(pz) (v=1)
Each coefficient of the small perturbation terms is an entry in the output matrix.

3.4.2 Total Pressure

The output equation for the total pressure is determined in the same manner as for the static pressure.
The components of the output matrix for the total pressure response are obtained from the linearization of
the total pressure equation:

pt=p (1 +— M2) i (3.64)

The pressure and Mach number terms are replaced with expressions in terms of p, m, and ¢,

m2(1 — 737
(v=1) Rerp+m* (1 -7) (25"’)")(-2*-6;0 —(;2) 7)>

Then the partial derivative with respect to the state variables is performed as shown below.
bpy = 3”* o0+ 9Pt 51 + 2Pt 3"‘ (3.66)

om

Each one of the coefficients on the small perturbation terms in the above equation is an entry in the output
matrix for the total pressure.

1
2 _ —
P i o) M
o 2vp2 (2ep — m2)
1
o _ m? m@2-7)\ (2p+m2(1—7)\7-1
om (7(25p—m2)+ p )( v (2ep — m?) ) (3.67)
1
O _ _ m? _ 2ep+m?(1-7)\y-1
r (7(2ep—m2) 7+1)( ~ (2ep — m?) )
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3.4.3 Mach Number

Likewise, the output equation for the Mach number is determined in the same manner. The components
of the output matrix for the Mach number response are obtained from the linearization of the Mach number
equation, u

= - (3.68)

[

The velocity and speed of sound terms are replaced with expressions in terms of p, m, and ¢ (as shown in
section 3.3.2). Again, the partial derivative with respect to the state variables is performed,

oM oM oM

and each coefficient on the small perturbation terms is an entry in the output matrix for the Mach number.
oM Veemy/y(Zep(y—1) — ym? + m?)sgn (o)
9 v (2ep—m2)* (1-7)
M _ 2v/2¢ |p| (3.70)
om (2ep — m2) /7 (2ep (v — 1) — ym? + m?) '
M V2myyQep(y—1) —ym? +m?) ol
Oe ¥ (2ep —m?)* (1 - )

4 Model Reduction

The models developed from the linearized split flux method have the same number of states as the CFD
code on which they are based. These models are usually too large to be used effectively in the design of a
control system; therefore, model reduction is necessary so that the linear model can be transformed into one
that is of manageable size. In addition, a reduced order model (ROM) is needed when a transfer function of
the system is desired because calculation of the transfer function from the full order model (FOM) becomes
a numerically ill-conditioned problem if there are a large number of state equations. In general, the linear
reduced order model is expected to perform like the linear full order model. There are many different methods
that can be used for model reduction; those considered here take advantage of the state space format of the
linear model.

One of the most common model reduction methods is singular perturbation [11]. This method requires
a linear model that can be partitioned into slow and fast subsystems so that a reduced order model can be
obtained by neglecting the fast subsystem. The ability to partition the system into subsystems indicates that
the model possesses a two-time scale property; that is, there is a large gap in the spread of the eigenvalues
of the linear model. There is little contribution to the dynamics of the system from the fast eigenvalues;
therefore they can be discarded and reduced order model obtained. But as was shown in [12] this method
does not provide the smallest reduced order model that can be achieved.

Another popular method is balancing [13] [14] [15]. This method requires a linear model that can be
partitioned into a strongly controllable/observable subsystem and a least controllable/observable subsystem.
A reduced order model can then be obtained by discarding the least controllable/observable subsystem.
However, the ability to partition the system into these subsystems indicates that the model is minimal;
that is, it is both controllable and observable. In general, linear models developed from the linearized CFD
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method are not minimal. Therefore this method does not work well because of the many uncontrollable and
unobservable states in the linear model.

Two model reduction methods that can be successfully applied to the linear model are the Schur and
square root methods [16]. Both of these methods take into account the controllability and observability of
the linear system, but they do not depend on the linear model being minimal. The square root method is
preferred over the Schur method because it is computationally less expensive. In addition, smaller reduced
order models can be extracted from the original reduced order model without any more computations. The
same is not true for the Schur method. The square root method is described in the next section and will be
applied to the linear models developed later in the paper.

4.1 Square Root Model Reduction

The square root method of model reduction detailed in [16] is summarized here for the readers convenience.
This model reduction method reduces the full order model by a balancing transformation that requires only
the first k (size of reduced order model) columns of the balancing transformation matrix. The reduced order
model (A, Bg, Ck, D) for the state space system (A, B, C,D) is calculated from:

Ay = ST, ASRpbi

B, = S],,B (4.1)
C:. = CSgrpig

D = D

Determination of the transformation matrices S}:,b,-g and Sg pig is shown below.

The controllability and observability Grammians, P and @), are calculated from the following Liapunov
equations.

AP+PAT = -BBT
ATQ+QA = -CTcC (4.2)
Once the Liapunov equations are solved for the Grammians, the square roots of P and Q are calculated.
LILT = P
LIT = Q (4.3)
A singular value decomposition of Lch produces the matrices needed to compute S{Mg and Sgpig-
Uy, vT=LTL. (4.4)
3", is defined as:
3, =diag(01,02, - -,0m) (4.5)

where m is the number of nonzero Hankel singular values represented by 0. The o are defined as the square
roots of the eigenvalues of the PQ matrix.

o=(\(PQ)? (4.6)

From Y,, 34 is defined as 3", = diag(01,02, --- ,0k). Note that the o are in descending order according
to their magnitude. Now Sy p;, and Sg sig can be calculated from the following equations,

Sibig = LOU{E(:?]
Sryg = LoV [ 26—3 } 4.7)
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and the reduced order model can be determined using equation (4.1). Determination of the size of the reduced
order model and the error associated with the model reduction process are described in the next section.

5 Uncertainty

The major source of error incurred in developing linear control models lies in the linearization process.
As long as all the expected perturbations from steady-state are “small”, the error bounds will be small.
Small, here, depends upon which variables are being considered and how sensitive the system dynamics are
to steady-state changes. Clearly this must be determined by trial and error for each system considered.
Normalizing the data allows all the variables to be weighted similarly. Many approaches could be considered
for determining error bounds. The one described below uses infinity norm bounds and is probably the most
useful for the control system designer; in addition, it is also a convenient form for the numerical experiments
considered. It should be noted that this error bound holds exactly only for linear systems; as such, it only
serves as an approximation of the true bound. Its accuracy will certainly be degraded for larger perturbations.

There is a certain amount of error associated with the linear models developed using the linearized split
fiux method; in particular, there is error due to the linearization process and the model reduction process.
These errors can be characterized as modeling uncertainties which are represented by error bounds and are
derived below.

5.1 Linearization Error

The modeling error due to the linearization process is based on the fact that the infinity norm of the
transfer function error is less than or equal to the one norm of the unit impulse response error (B. Veillette,
University of Akron, Akron, OH., private communication).

IG (1) e = G (1)l oo < llgtrue () — 8 (B)llx (5.1)

G (jw) . Tepresents the transfer function of an exact linear model, if it were available, and G (jw) represents
the transfer function from the split flux linearization process. The infinity norm of the transfer function error

is defined as:
G () irue — G ()l 0p = Tmax {G (§0)grye — G ()} (5.2)
and the one norm of the impulse response error is defined as:
{o o}
Iirae ) — £ (Ol = [ I () - 8 O] (53)
f(;x’ |&true (t) — g (t)| dt can be approximated by:
oo N
[l - 801t = 3 lgi — @71 AT (5.4)
0 n=0
Therefore, the error bound on the infinity norm of the transfer function can be represented by the following:
N R
G (1) rue = G (10)lloo S D |8Fie — 87| AT (5.5)
n=0

The notation can be simplified by expressing G (jw)ypye — G (jw) 2s E (jw) and g, — g™ a3 e”. Therefore,
the linearization error bound is represented as:

N
IEGe)le S D le" AT (56)

n=0
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For multi-input/multi-output systems (MIMOQO), the transfer functions and impulse responses are represented

in matrix form, and the linearization error bound can be determined from the following:

llews (B
lle2p ()1l

E (f)llo < Tmax

The maximum singular value of a matrix is defined as:

Omax = (Amax (Mmatriz

[ Jlew (®)ll; lles2 ()l
llez1 (®)ll;  lle22 ()l

[ ller @y ller2 (Bl

T

matriz)) 3

llews (Il

(6.7)

(5.8)

For a MIMO system with p number of inputs and » number of outputs, the transfer function error matrix is

written as:
E; (jw) Ep2

Biw)=| f’w) Fo

Erl (Jw) Er2 (Jw)

and the impulse error matrix is written as:

en(t) ez(t)
e (t) ex(t)

e(t)=

e,l. ®) e,Q- (t)

(o) -+ Eip(w)

In the preceding definition, the one norm of each element is:

[ Jlew (O],

o0 t
[lera| =@

| ller (9]l

and the approximation for (5.11) is:

'/000 le (t)] dt ~

leTy| AT

le5;| AT

itse 102

llex2 (£)1,
lle22 (®)ll,

ller2 (£} 11y

leT,| AT

leds| AT

iz i

N N
S 1enIAT 3 Jen| AT
L n=0 n=0

22

e, ()
egp (t)

e,,; (#)

(o) -+ Egp(jw)

E (jw)

lew (1l |
lleze (®)1l,

llers (O)ll; |

-

N
nz=:o leT,| AT

3 > | AT
nz=:0|92pl

S fen AT
3 felar |

(5.9)

(5.10)

(5.11)

(5.12)



Therefore the infinity norm of the error transfer function matrix is bounded by:

rr 15

N N N

S eHlAT 3 jeR|AT - X |ef,| AT
n= n=0 n=0
N N N

, S €| AT 3 |eR|AT -+ 3 |ef,|AT

”E(Jw)“oc < Omax ﬁ n=0 n=0 n=0 > (5.13)

N N N

\ Y. len| AT Y lefs| AT --- 2 |e:'lp|AT

L n=0 n=0 n=0 4 /

and (5.13) is used to calculate the linearization error bound for a MIMO system.

The error analysis described above is based on the error in the unit impulse response. However, in general,
the input for the nonlinear model is a step not an impulse; therefore, the impulse error must be derived from
step response data. In the block diagram shown below, the setup for the error analysis is illustrated.

G(S) yrue

+ ¢ YO
e(t),,

S(t) —»

@ |-

y(t)

G(s)

This block diagram can be rearranged so that the outputs of the transfer functions are the impulse responses.

G(S) o |

8(t) —

(1),

G(s)

Now, the step error is represented as the integration of the impulse error. Therefore, the impulse response
error can be determined from the step response data by taking the derivative of the step response error.

d
e(t)= 2 ¥ Brue — ¥(®) (5.14)
If the time derivative in the previous expression is approximated by a finite difference expression, then
equation (5.14) can be rewritten as:
n_ ,n-1
-y )) (5.15)

e ~ ((y?m - y?r;i
and the linearization error bound can be calculated using (5.13) .

)._
AT
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5.2 Model Reduction Error

When using the square root model reduction described in the previous section, the bound on the error
between the linear full order model and the linear reduced order model can be quantified as shown below
[17].

|G (jw) — Gi (jw)|o < totbnd (5.16)
The totbnd is defined as the following: o
totbnd =2 »_ o; (5.17)
i=k+1

where, from equation (4.6), the o are the Hankel singular values, k is the size of the reduced order model,
and m is the number of nonzero Hankel singular values. The totbnd can also be used to determine the size
of the reduced order model by using equation (5.16) and specifying an error tolerance that is to be satisfied
over all frequencies. The size of the reduced order model is then equal to k with the totbnd equal to or less
than the specified error tolerance.

5.3 Total Error Bound

As the infinity norm bound of a system is a Nyquist plane bound, the bounds serve as magnitudes of
error incurred in each step in the modeling process. Thus, the total infinity norm bound is determined as
the sum of the individual bounds from linearization and model reduction. This is represented as:

G (1) true = Gk (1)l € NG (10)gre — G (JW)lloo + 1G (3w) — Gk (jw)lloo (5.18)

where G (jw),,.,,. Tepresents the transfer function of an exact linear model, G (jw) is the transfer function
from the linearization process, and Gy (jw) is the transfer function from the model reduction process.

6 Example Application

6.1 Description

A mixed compression axisymmetric inlet is the model used to illustrate the CFD based linear modeling
technique. This inlet is a good candidate because it is representative of an HSCT type inlet. The operating
point is: altitude = 65,000 ft, poo = 117.8 45, Too = 390 °R, Moo = 2.35, Meompressor face ~ 0.4 and
v = 1.4 . Simulation data for the nonlinear model was obtained from the CFD code LAPIN [8]. The split-
characteristics algorithm was chosen as the simulation method because of its accuracy; it is a conservative,
shock-capturing method using characteristic information. The time step for the LAPIN simulations and for
the linear model simulations was At = 1 x 10~4. Comparison of the transient simulation data, for calculation
of the linearization error bound, was taken at every tenth data point from both sets of data.

Five different linear models were generated from a 41 node LAPIN CFD model of the inlet for five different
system inputs. They included: a downstream corrected massflow perturbation, an upstream Mach number
perturbation, an upstream static temperature perturbation, a downstream bypass massflow perturbation,
and a throat bleed massflow perturbation. There is not an example of the downstream static pressure
input because this is not representative of a real system input; it is used only for illustrative purposes. In
addition, the downstream Mach number input does not have an example, because it is basically the same as
the downstream corrected massflow input. The steady-state LAPIN data before the perturbation occurs is
used to generate the linear model, and the linear model is validated from the transient LAPIN data that is
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recorded after the perturbation. In general, the perturbation is a step input that is not too large so that the
small perturbation analysis remains valid. The LAPIN model is a nonlinear system of 123 equations, and
the linear full order model is a system of 123 equations. Note that the number of equations in the linear
model is equal to the number states in the system. All of the reduced order models were calculated using
the square root method with a specified error tolerance of 1.0 x10~4. This means that the totbnd will be
equal to or less than 1.0 x10~ for the reduced order model. The nondimensional results for these examples
are discussed in the next section, and the data for these matrices are listed in section 8.3 of the appendix.

6.2 Results

6.2.1 Downstream Corrected Massflow Perturbation

The inlet is perturbed at 0.07 seconds with a 1% step in downstream corrected massflow. The linear full
order model has 123 states, one input, and four outputs. Figure 2 shows the output responses for the static
pressure and total pressure at X/R. = 4.5016 which is just after the normal shock (see Figure 1). The
1% change in the downstream corrected massflow produces a —2.1% change in steady state for the static
pressure output and a —0.997% change in steady state for the total pressure output. Figure 3 shows the
output responses for the static pressure and total pressure at X /R, = 5.6976. The corresponding changes
in the steady state values for the outputs are —1.325% for the static pressure and —0.997% for the total
pressure. For this model the linearization error bound is ||E (jw)|., < 86090 x 10~2. Figure 4 is a plot of
the linear full order model eigenvalues and the linear reduced order model eigenvalues. The reduced order
model has 18 states. The model reduction error bound is |G (jw) — Gk (jw)||o, < 5.4184 x 107#, and the
total error bound is 8.6632 x 10~2.

6.2.2 Upstream Mach Number Perturbation

The inlet is perturbed at 0.05 seconds with a —2% step in upstream Mach number, and the downstream
boundary condition is constant Mach number. The linear full order model has 123 states, one input, and
six outputs. Figure 6 shows the output responses for the Mach number and total pressure at the cowl lip,
X/R, = 2.0008. The —2% change in the upstream Mach number produces a —2.02% change in steady
state for the Mach number and a —7.07% change in steady state for the total pressure. Figure 7 shows
the output responses for the Mach number and total pressure at the throat, X /R. = 3.8492 (see Figure
5). The corresponding changes in the steady state values for the outputs are —9.83% for the Mach number
and —7.07% for the total pressure. Figure 8 shows the static pressure and total pressure responses at
X/R. = 5.154 which is downstream of the normal shock. The corresponding changes in the steady state
values for the outputs are —3.37% for the static pressure and —3.37% for the total pressure. The linearization
error bound is [|E (jw)||,, < 2.9309 x 10~. Figure 9 is a plot of the linear full order model eigenvalues and
the linear reduced order model eigenvalues. The reduced order model has 29 states. The model reduction
error bound is [|G (jw) — Gk (jw)l|o, < 8-8679 x 1074, and the total error bound is 2.9398 x 1071

6.2.3 Upstream Static Temperature Perturbation

The inlet is perturbed at 0.05 seconds with a 4% step in upstream static temperature, and the downstream
boundary condition is constant Mach number. The linear full order model has 123 states, one input, and
six outputs. Figure 11 shows the output responses for the Mach number and total pressure at the cowl
lip, X/R. = 2.0008. The 4% change in the upstream static temperature produces a —1.96% change in
steady state for the Mach number and a —6.88% change in steady state for the total pressure. Figure 12
shows the output responses for the Mach number and total pressure at the throat, X/R. = 3.8492 (see
Figure 10). The corresponding changes in the steady state values for the outputs are —9.47% for the Mach
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number and —6.89% for the total pressure. Figure 13 has the static pressure and total pressure responses
at X/R. = 5.154 which is downstream of the normal shock. The corresponding changes in the steady state
values for the outputs are —3.27% for the static pressure and —3.27% for the total pressure. The linearization
error bound is ||E (jw)||., < 1.4377 x 10, Figure 14 is a plot of the linear full order model eigenvalues and
the linear reduced order model eigenvalues. The reduced order model has 17 states. The model reduction
error bound is ||G (jw) — Gx (jw)|lo, < 7.7758 x 10—, and the total error bound is 1.4455 x 10~1.

6.2.4 Downstream Bypass Massflow Perturbation

The inlet is perturbed at 0.1 seconds with a 200% step in downstream bypass massflow; this is equivalent
to a 2% change in total massflow. The input is distributed over the bypass which is located at X/R. =
5.5131 —6.0983 and is downstream of the normal shock (see Figure 15). The downstream boundary condition
is constant corrected massflow. The linear full order model has 123 states, one input, and six outputs. Figure
16 shows the static pressure and total pressure responses at X/R, = 4.5016 which is before the bypass. The
200% change in the downstream bypass massflow produces a —3.88% change in steady state for the static
pressure output and a —1.99% change in steady state for the total pressure output. Figure 17 shows the static
pressure and total pressure responses in the bypass region at X/R. = 5.8063. The corresponding changes in
the steady state values for the outputs are —2.31% for the static pressure and —1.99% for the total pressure.
Figure 18 shows the static pressure and total pressure responses after the bypass at X/R. = 6.2413. The
corresponding changes in the steady state values for the outputs are —1.99% for the static pressure and
—1.99% for the total pressure. The linearization error bound is ||E (jw)||., < 1.801 x 10~}. Figure 19 is a
plot of the linear full order model eigenvalues and the linear reduced order model eigenvalues. The reduced
order model has 22 states. The model reduction error bound is |G (jw) — Gk (jw)]|, < 7.1382 x 1074, and
the total error bound is 1.8081 x 10~1.

6.2.5 Throat Bleed Massflow Perturbation

The inlet is perturbed at the first bleed on the cowl side of the inlet at 0.1 seconds with a 200% step
in throat bleed massflow; this is equivalent to a 2% change in total massflow. The bleed is located on
the cowl at X/R,. = 3.205 — 3.625 and is upstream of the normal shock (see Figure 20). The downstream
boundary condition is constant corrected massflow. The linear full order model has 123 states, one input,
and six outputs. Figure 21 shows the static pressure responses in the bleed region at X/R. = 3.3056 and
X/R. = 4.0667. The 200% change in the throat bleed massflow produces a —1.28% change in steady state
for the first static pressure output and a —5.89% change in steady state for the second static pressure output.
Figure 22 shows the static pressure and total pressure responses at X/R. = 4.6103 which is downstream
of the normal shock. The corresponding changes in the steady state values for the outputs are —1.99%
for the static pressure and —1.99% for the total pressure. Figure 23 shows the static pressure and total
pressure responses at X/R, = 5.6976. The corresponding changes in the steady state values for the outputs
are —1.99% for the static pressure and —1.99% for the total pressure. The linearization error bound is
|E (jw)ll, S 1.6266 x 10~1. Figure 24 is a plot of the linear full order model eigenvalues and the linear
reduced order model eigenvalues. The reduced order model has 30 states. The model reduction error bound
is |G (jw) ~ Gi (jw)ll oo < 8.4574 x 1074, and the total error bound is 1.6351 x 10~.

6.3 Discussion

The error bounds for the linear models are all less than one, and most of the error is due to the lineariza-
tion process. The specific causes and importance of the linearization error have not yet been determined.
Certainly, some of the linearization error can be attributed to the fact that we are modeling a nonlinear
system with a linear model, and there will always be inherently some amount of error. However, the lineariza-
tion error can most likely be attributed to inaccuracies in the linear modeling process. The identification of
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the causes and minimization of the linearization error will be addressed at a later date.

In general, a linear model with multiple inputs and outputs is more controllable and observable than a
linear model with fewer inputs and outputs. Therefore, the reduced order model for a multi-input/multi-
output model will be larger than for a single-input/single-output model. In addition, models with distributed
inputs, such as the downstream bypass and throat bleed, have larger reduced order models, because they
have more entries in the input matrix which increases the controllability of the system. Note that in the plots
of the full order model eigenvalues and reduced order eigenvalues, the full order model eigenvalues closest
to the origin are reproduced in the reduced order model. But the full order model eigenvalues farther away
from the origin are approximated by just a few eigenvalues in the reduced order model.

The size of the reduced order model is dependent upon the error tolerance that is used. If the error
tolerance is less restrictive, the full order model can be further reduced as shown in the following table.

ROM ROM Percent
Model Error Error Size Error Error Size = ROM Further
Tolerance Bound ROM Tolerance Bound ROM Reduced
1 1x10~3 54184 x10~¢% 18 1x10-2 50708 x10~3 16 11.1
2 1x10"% 8.8679x107% 29 1x10"2 81463 x10~% 24 17.2
3 1x10°3 7.7758 x107¢ 17 1x10"2 69055 x10~% 14 17.6
4 1x10-3 7.1382x10"% 22 1x10"2 37714x10°% 20 9.1
5 1x10~3 84574x10~* 30 1x10~2 7.7581x10~3 26 16.7

In Figure 25 the size of the reduced order model is shown for error tolerances greater than or equal to
1.0 x 1074,

7 Conclusion

CFD models provide accurate models of internal fluid flows. In order to do this, many dynamic states
are necessary. Unfortunately, the control engineer is somewhat at a loss as to what to do with all of this
information, particularly in designing a controller for a plant of this size. But as was shown, it is possible
to extract information from CFD results and model the propulsion system using linearized CFD equations.
This method provides a small perturbation model that can be used for control applications and real-time
simulations. It is important to note the utility of the modeling procedure; all that is needed to obtain a
linear model of the propulsion system is the spatial step and steady-state operating conditions from a CFD
simulation or experiment. This research represents a beginning step in establishing a bridge between the
controls discipline and the CFD discipline so that the control engineer is able to effectively use CFD results
in control system design and analysis. In the future this research will be applied to multi-dimensional flows
and viscous flows.
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8 Appendices

8.1 Symbols
A cross sectional area (ft?)
By, physical boundary condition

8ogle ® wmawé’)‘gw'ﬁ 3 3 mga;;qg.mm QQEme © Wy °

speed of sound (g)

total energy per unit mass (%)
error transfer function matrix
internal energy per unit mass ( 8 )

sec
error
flux vector
mass transfer momentum term
area source vector
transfer function
impulse response
total enthalpy per unit mass
Jacobian
matrix of right eigenvectors
Mach number
mass transfer continuity term

massflow per unit area (;—“}%)
massflow (':—;‘cz)

pressure (7%)

controllability Grammian
observability Grammian

mass transfer energy term
universal gas constant

cowl radius (ft)

entropy

time (sec)

velocity (-,%)

vector of conservative variables
vector of characteristic variables
distance (ft)
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8.1.1 Greek Symbols

AT sampling time (sec)

Azr  spatial step (ft)

¢ = pE, total energy per unit volume ("’t t)
small perturbation variable

ratio of specific heats

diagonal matrix of local characteristics
eigenvalue

density (%‘#)

singular value

frequency (22¢)

N gD >Hpe0

oo
-

Subscripts

boundary condition
corrected

grid point

size of reduced order model
left

total number of grid points
number of outputs

right

number of inputs

source

sea level conditions
steady-state

total conditions

REEICRIELIT LA

8.1.3 Superscripts

N  numerical
n  time level
P physical

T transpose
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8.2 Figures
8.2.1 Example #1: Downstream Corrected Massflow Perturbation
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Figure 2: o Lapin Results/- Linear ROM Results
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Imaginary

Output Response to a 1% Step in Downstream Corrected Massflow
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8.2.2 Example #2: Upstream Mach Number Perturbation

Area Distribution
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Figure 5: Steady State Operating Point

Output Response to a -2% Step in Upstream Mach Number

004 006 008 01 012 014 016 018 02

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Time (seconds)

Figure 6: o LAPIN Results/- Linear ROM Results

32



Output Response to a 2% Step in Upstream Mach Number
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4 Linear System Eigenvalues
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8.2.3 Example #3: Upstream Static Temperature Perturbation

Area Distribution
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Output Response to a 4% Step in Upstream Static Temperature
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Output Response to a 4% Step in Upstream Static Temperature
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8.2.4 Example #4: Downstream Bypass Massflow Perturbation

Area Distribution
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Output Response to a 200% Step in Downstream Bypass Massflow
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Linear System Eigenvalues
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8.2.5 Example #5: Throat Bleed Massflow Perturbation
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Output Response to a 200% Step in Throat Bleed Massflow
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Output Response to a 200% Step in Throat Bleed Massﬂow
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Error Bound

Model Description

Corrected Massflow Downstream Perturbation
Mach Number Upstream Perturbation
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Error Bound vs. Model Order

Model Order
Figure 25: Model Reduction Error Bound, |G (jw) — Gg (jw)||ovs. Model Order
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8.3

Matrices for Reduced Order Linear Models

8.3.1 Example #1: Downstream Corrected Massflow Perturbation

System Matrix

W)

Columns 1 through 8

-5.0531e+001
~1.3626e+002
~9.7600e+001
-1.3978e+002
-4 _3700e+001
-5.6857e+001

6.9266e+001

2.728%e+001

4 .4890e+001
-2.1792e+001
-1.1872e+001
-9.7418e+000
—4.9799e+000
-1.2458e+001

4.0538e+000
-2.8534e+000

9.5982e+001
-1.0095e+002
-6.3349e+002
-2.6393e+002
-1.0115e+002
-1.3494e+002
1.4126e+002
5.9506e+001
9.648%e+001
-4.6514e+001
-2.5356e+001
-2.0860e+001
-1.0657e+001
-2.6654e+001
8.6723e+000
-6.1049e+000

Columns 9 through 16

-2.2737e+001
~5.6275e+001
8.8503e+001
2.3392e+002
-2.0954e+002
-1.7650e+002
1.2684e+003
1.4535e+003
-1.7878e+003
1.6300e+003
1.1766e+003
8.0209e+002
4.1033e+002
1.0412e+003
-3.2606e+002

1.8558e+001
-5.2772e+000
4.3909e+000
-1.7316e+002
6.9117e+001
2.6776e+002
-2.1804e+002
~5.3995e+002
2.8002e+002
-1.0998e+003
-2.3087e+003
-1.1925e+003
-5.9207e+002
-1.3899e+003

-3

6
-1
-5
-1
-1

2.

N

-5
-1
2
1
-4
5
1

.5473e+000 1.3863e+002 -2.9821e+001 -5.0993e+001

.3264e+002
.6514e+002
.5567e+002
.7381e+002
.8618e+002
5384e+002
-1176e+001
.4822e+002
.2873e+001
.9857e+001
.2614e+001
.6681e+001
.1741e+001
.3577e+001
.5543e+000

.6151e-001
.4529e+001
.0754e+001
.9630e+001
.1769e+001
.0634e+001
.3182e+002
.0170e+001
.1096e+002
.6978e+003
.0197e+002

1.2554e+001
3.2995e+002
-5.5770e+002
-1.1128e+003
-7.7058e+002
6.9625e+002
2.7323e+002
4.0073e+002
-1.9672e+002
-1.0912e+002
-8.9653¢+001
-4.5779e+001
~1.1448+002
3.7188e+001
-2.6170e+001

-9.3027e+000
1.018%9e+001
-1.4385e+001
8.4251e+001
-3.3951e+001
-1. 2444e+002
-1.7335¢+001
2.1637e+002
~3.2649e+002
1.0967e+003
1.9474e+002

-8.8040e+002 -1.1691e+003
-4.4511e+002 -1.3832¢+003
-1.0419e+003 -3.5831e+003
4.1539e+002 3.3400e+002 9.8463e+002
2.2679e+002 -2.8714e+002 -2._4366e+002 -7.0375e+002

1.1256e+001
6.4698e+001
1.0581e+003
-1.2396e+002
-3.3903e+002
3.6377e+002
1.3399e+002
2.5359e+002
-1.1834e+002
-6.2969e+001
-5.2085e+001
-2.6666e+001
-6.6654e+001
2.1727e+001
-1.5300e+001

-3.6632e+000
2.1825e-001

1.0706e+000

3.5265e+001

-9.7271e+000

-5.3266e+001
4.9232e+001
6.5040e+001

-2.1113e+002
5.7465e+002
1.0150e+002
2.3093e+002

-3.7488e+002

~2.6502¢+003
5.7259e+002

-4 . 44T3e+002
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8.9664e+001
~7.8829e+001
7.1162e+002
4.5799e+001
-4.0770e+002
1.7520e+003
3.3066e+002
6.4170e+002
-3.1405e+002
-1.6572e+002
-1.3348e+002
-6.8414e+001
-1.7167e+002
5.6021e+001
-3.9431e+001

-8.7882e+000
-8.3295e+000
1.6390e+001
8.8130e+001
-4 .5608e+001
-7.7962e+001
2.3697e+002
1.3713e+002
-9.382%e+002
1.0197e+003
-6.0311e+001
8.7987e+002
9.3536e+002
-2.8327e+003
1.7450e+003
-1.4424e+003

5.8175e+000
1.1838e+002
-2.3237e+002
-2.9082e+002
2.6706e+001
-1.2495e+003
-8.8929e+002
-8.5320e+002
-1.4092e+003
5.7460e+002
2.9735e+002
2.49%e+002
1.2701e+002
3.1684e+002
-1.0368e+002
7.3161e+001

1.7251e-001
6.7160e+000
-1.0664e+001
-6.6380e+000
6.6752e+000
-5.2442e+000
-8.2795e+001
-1.2079e+001
2.1521e+002
-2.0043e+002
2.0951e+002
-8.3132e+001
2.1132e+002
4.5691e+002
-1.3960e+003
3.1002e+003

2.3776e+001
-2.2555e+001
2.8694e+001
-2.4638e+002
1.0699e+002
1.9337e+002
3.6164e+002
-3.4361e+002
-1.8542e+003
6.4780e+002
2.8598e+002
2.3515e+002
1.2231e+002
3.0743e+002
~1.0106e+002
7.1255e+001

1.5208e+000
2.4559e+000
-4 .2498e+000
-1.5776e+001
1.1915e+001
6.3780e+000
-5.2819e+001
-2.848%9e+001
2.0857e+002
-9.8592e+001
1.1137e+002
2.5913e+002
1.6773e+002
1.3217e+003
-2.2212e+003
-1.3535e+003



Input Matrix (B)

-1.2349e+002
-1.1531e+002
-1.2052e+002
-1.4858e+002
-5.6508e+001
-7.2107e+001

8.4827e+001

3.3662e+001

5.4698e+001
-2.6579e+001
-1.4507e+001
-1.1908e+001
~6.0864e+000
-1.5226e+001

4.9534e+000
-3.4865e+000

output Matrix (C)

Columns 1 through 6

7.2912e+001 -9.4400e+001  9.0049e+00N
4.3923e+001 ~5.0680e+001 6.0438e+001

7.1449e+001  4.0608e+001
5.3845e+001 1.2970e+001

Columns 7 through 12
3.9146e+001 -9.8341e+000
3.8255e+001 -2.4920e+001

Columns 13 through 16

-5.0521e+001
-1.4544e+001

-1.5696e+001

=7.0459e+001 -3.4989e+000
-5.2065e+001 2.7107e+001
-9.8690e+001 2.6106e+001
-6.8271e+001  4.2007e+001

-9.5358e+000 -1.0995e+001

-2.6217e+000 -8.3792¢+000 6.4659e+000
-5.8219e+001 ~1.5616e+001 3.8035e+001 -2.3322¢+001 4.5375e+000
-2.8467e+001 —1.3098e+001 3.5944e+001 -1.1805e+000 5.2130e+000

2.2411e+000 2.1395e+000 2.9905e+000 2.8638e—001
4.4775e-001 -3.2950e+000 1.59%44e—001 6.0509e—001
5.6116e+000 1.1445e+001 -3.9104e+000 —1.5943e+000
-5.7590e-001 9.2404e+000 5.2518e-001 -3.0275e+000

Input/Output Matrix (D)

[~ 2~ = I ]

5.7198e+001
2.3553e+001
3.6828e+001
4.0985e+000

6.7652¢+000
6.6546e+000
6.7151¢+000
2.5809e+000



8.3.2 Example #2: Upstream Mach Number Perturbation

System Matrix

w

Columns 1 through 8

~4.7989e+002 -8.0461e+002 1.

-2.3966e+003

1.2925e+003
.0145e+002
.1233e+002
.2236e+002
.7045e+002
.9155e+002
.7360e+002
.1025e+002
.1213e+002
.1701e+002
.7688e+001
.7055e+001
.5791e+001
.3644e+001
. 4625e+001
1.3642e+001
.9742e+001

8.9452¢+000

3.5494e+000

6.4633e+000
-2.0052e+000

5.2304e+000

-7.0292e+003
6.3020e+003
3.2021e+003
1.3697e+003
1.9406e+003
1.2635e+003
8.9874e+002
1.3390e+003

.0269e+003

.4295e+002

.6701e+002

.3441e+002

.3128e+002

.7080e+002
1.6328e+002
1.1950e+002
6.6201e+001

-9.5800e+001
4_3407e+001
1.7224e+001
3.1364e+001

-9.7303e+000
2.5381e+001

Columns 9 through 16

1.0267e+002
3.8433e+001
-1.7957e+002
-4 . 4484e+002
5.3591e+002
1.2945e+003
1.1445e+003
6.1845e+002
-1.5256e+003
2.9499e+003
1.3772e+003
1.3330e+003
3.0025e+002
3.0325e+002
6.1921e+002
-3.6899e+002
-2.7065e+002
-1.5073e+002

-9.4504+001
6.7437e+001
2.9640e+002

-1.0564e+002

-2.9436e+002

-2.8230e+002
2.8510e+001

~7.4721e+002

-1.3646e+003

-1.9796e+003

-3.0381e+003

-2.5943e+003

-5.1319e+002

-5.0441e+002

-1.0037e+003
6.2775e+002
4.6400e+002
2.5377e+002

.5544e+003
.9460e+003
.1453e+003
.3704e+003
.8110e+003
.1531e+003
-4329e+002
.1968e+003
.1585e+002
9006e+002
.1173e+002
.2102e+002
.1825e+002
.4384e+002
.4707e+002
.0765e+002
.9631e+001
.6300e+001
.9102e+001
.5516e+001
.8253e+001
.7652e+000
. 2864e+001

.9238e+001
.6816e+001
.5288e+001
.6682e+001
.2533e+001
.7301e+002

1.1486e+002
-4 .9347e+001
—7.7002e+002

2.3274e+003
-1.3757e+003
-3.3506e+003
-6.7508e+002
-6.0075e+002
-1.4238e+003

8.5736e+002

6.1022e+002

3.3803e+002

1.8038e+003
-7.2008e+002
-1.2792e+003
-1.0774e+003
-1.5467e+003
-9.7864e+002
-5.5662e+002
-8.1413e+002
6.5927e+002
3.4843e+002
3.6188e+002
8.5782e+001
8.3912e+001
1.7297e+002
-1.0420e+002
~7.6266e+001
-4 .2266e+001
6.1162e+001
-2.7712e+001
-1.0996e+001
-2.0023e+001
6.2119e+000
-1.6204e+001

4.7436e+001
-8.7840e+001
-1.3302e+002
3.8881e+001
2.2476e+002
8.7712e+001
5.8120e+001
3.7877e+002
-4.9870e+002
2.1776e+003
1.0410e+003
-3.2616e+003
-2.6277e+003
-1.9199e+003
-3.9208e+003
1.9461e+003
1.3648e+003
7.8387e+002

1919e+003  4.4789e+002 -3.2507e+001

6.0480e+002
7.8241e+001
2.6425e+002
-3.8311e+002
-1.2638e+003
-6.6649e+002
-3.9635e+002
-7.9517e+002
5.5239e+002
2.7545e+002
2.8691e+002
6.9247e+001
6.7285e+001
1.3899e+002
-8.3744e+001
-6.1252¢+001
-3.3932e+001
4.9083e+001
-2.2241e+001
-8.8264e+000
-1.6072e+001
4.9861e+000
-1.3006e+001

-8.0532e+000
9.1333e+000
2.1341e+001
5.3206e+000

-4.9259e+001

~1.2264e+001

-3.9202e+001

-7.1617e+001
1.4849e+002

-6.6577e+001

-2.5542e+001
2.3896e+003

-4.0409e+002

-1.1420e+003

-1.8988e+003
9.8020e+002
7.0947e+002
3.9547e+002
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~1.2974e+001
6.5190e+002
-1.3056e+002
6.8606e+002
2.8537e+002
-9.4211e+002
-1.3913e+003
-1.2119e+003
-1.5803e+003
9.7963e+002
4 .8306e+002
5.2118e+002
1.2405e+002
1.2040e+002
2.4960e+002
-1.5085e+002
-1.1029e+002
-6.1050e+001
8.8315e+001
~4.0024e+001
-1.5884e+001
~2.8922¢+001
8.9725e+000
-2.3404e+001

1.1078e+000
-1.4633e+000
8.0199e+000
-3.7529¢+001
-1.8905e+000
8.9396e+001
4 . 4744e+001
-6.1168e+001
-1.5982e+002
-3.8320e+001
-4.1779e+002
1.2332e+003
4.7983e+002
~5.2489e+002
~3.0178e+003
1.7304e+003
1.1230e+003
5._2441e+002

1.3684e+001
3.9329e+002
-1.7082e+002
4.4057e+002
-1.338%e+001
1.9943e+002
-4, 4465e+002
-1.0113e+003
-1.2496e+003
6.8811e+002
3.6034e+002
3.8128e+002
9.1122e+001
8.8197e+001
1.8233e+002
-1.1037e+002
~8.0737e+001
~4.4652e+001
6.4619e+001
-2.9282¢+001
~1.1621e+001
-2.1161e+001
6.5647e+000
-1.7124e+001

-1.8725¢+001
2.6939+001
6.6000e+001

-5.4657e+001

-5.9613e+001
1.5665e+001
5.9658e+001

-1.7097e+002

-1.4845e+002

-9.4739e+002
4.8778e+002
3.4207e+003
5.1915e+002
1.2020e+003

-3.1478e+003
4.6258e+003
3.5753e+003
1.3339e+003

-2.8930e+001
2.6561e+002
1.0180e+002

-1.6357e+002

-1.8111e+002
6.5441e+002
6.2082e+002

-3.4680e+002

-1.3060e+003
9.3371e+002
4.1320e+002
4.1158e+002
1.0242e+002
9.95%4e+001
2.0535e+002

.2284e+002

~8.9809e+001

-4.9862e+001
7.2065¢+001

-3.2653e+001

.2959e+001

~2.3597e+001
7.3207e+000

.9096e+001

1.1244e+001
. 4006e+001
.6576e+001
~4.9637e+001

4.7354e+001

1.3724e+002

8.7253e+001
.5654e+000
~3.2420e+002

1.4040e+002
-6.9529e+002
~7.1418e+002

7.7030e+000
-1.4682e+003
-2.0336e+003
-2.8057e+003
-3.9157e+003
-2.5404e+003



2.1823e+002 -3.7038e+002
~9.8842e+001 1.6760e+002
~3.9192e+001 6.6474e+001
-7.1370e+001 1.2107e+002
2.2146e+001 -3.7554e+001
-5.7765e+001 9.7962e+001

Columns 17 through 24

1.4571e+000
-4.6614e-002
7.3361e+000
~4_1860e+001
1.6058e+001
7.1639e+001
6.9711e+001
.5817e+001
.3569e+002
.2100e+002
.7221e+002
1.3818e+002
.2137e+001
.3883e+002
.8317e+003

4.9553e+000
-7.5300e+000
-1.5950e+001
9.8334e+000
1.4854e+001
7.4340e+000
-1.0687e+001
3.6156e+001
1.9526e+001
2.5168e+002
-1.6532e+002
-5.9710e+002
3.1223e+001
4.3217e+001
1.2750e+003

-4.8235e+002
2.1976e+002
8.7325e+001
1.5887e+002

-4.9291e+001
1.2851e+002

8.4962e+000
-1.2356e+001
-1.7073e+001
-1.9452e+001
3.3912¢+001
7.3682¢+001
3.9684e+001
2.1356e+001
~1.6057e+002
2.1858e+002
-4.0804e+002
-6.0375e+002
1.9297e+002
-3.8072e+002
9.0424e+002

6.7211e+002 -3.6044e+003
4.0475e+003 -2.3391e+003

.7705e+002
.1783e+003

.7292e+003 -1.1686e+003
.9900e+003
.6975e+003
.0966e+002
.1112e+003 -1

.5591e+002 3.

-1

-3.4503e+003

-1.0930e+003 -5.8211e+002 -7.4988e+002 -2.2815¢+003 3.8211e+003

4.9643e+002 2.6528e+002 3.4839e+002
1.9820e+002 1.0355e+002 1.3890e+002
3.6075e+002 1.8831e+002 2.519e+002
-1.1189e+002 -5.8607e+001 -7.8015¢+001
2.9206e+002 1.5246e+002 2.0278e+002

-2.8097e+000 1.1428e+000 1.5965e+000
4.1222e+000 -1.508%e+000 —1.9965e+000
5.8201e+000 -1.7190e+000 -1.3276e+000
6.2114e+000 —4.7779e+000 -1.0656e+001

~1.7328e+001 4.2364e+000 8.4183e+000

=1.4992e+001 1.4436e+001 2.4401e+001

-1.9571e+001 7.8674e+000 1.9086e+001

-1.7517e+001 -8.0581e-001 -2.9153e+000
7.5780e+001 -2.9841e+001 -6.8947e+001

-2.7223e+001 2.1520e+001 -6.0450e+000

-1.5957e+000 ~7.9105e+001 -8.9492¢+001
3.4786e+002 -4.4379e+001 -6.0400e+001

-2.5108e+002 3.4918e+000 6.1581e+001

-5.6225e+001 -1.1279e+002 -1.7384e+002

-1.7574e+002 4.6262e+000 -2.2048e+002
8.8657e+002 -5.5729e+002 -9.9186e+002
9.9418e+002 -3.5124e+002 -9.9911e+002
4.6013e+002 -9.1224e+001 2.3008e+002

4.6642e+003 -6.5863e+003 -1.8663e+002 -2.9611e+003 -4.0696e+003
.6254e+003 6.0700e+003 -2.4866e+003 1.9447e+003 3.5125e+003
-5.9977e+002 3.0945e+003 -2.8504e+003 -8.6808e+002 ~1.2263e+003
.1203e+003  4.9306e+003 -4.5744e+003 -2.4020e+003 -4.6476e+003
3604e+002 —1.4385e+003 1.0807e+003 8.6350e+002 4.7751e+003

-9.2910e+002 -8.7957e+002 3.6172e+003 -3.1040e+003 -2.5554e+003 -8.5784e+003

Input Matrix (B)

-1.4276e+003
-4 .3092e+003
2.6854e+003
1.2284e+003
4.5833e+002
6.2634e+002
4.0404e+002
2.8258e+002
4.1093e+002
-3.143%e+002
-1.6658e+002
-1.7390e+002
-4.1196e+001
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1.0150e+003
4.0040e+002
7.3122e+002
-2.2569e+002
5.8828e+002

-4 2524001
6.0864e-001
9.8607«-001
4.4906e-001

-3.6882e-001

~4.5375e+000
1.8426e-001
3.3131e-001
5.6169e-001

-2.2978e+001
4.4947e+001
8.0285e+000
2.9152e+001
4.7551e+001

-8.6443e+001
1.5544e+002

-5.2151e+001

-1.5625e+003
~-5.7191e+002
-1.0558e+003

3.3204e+002
-8.7054e+002

2.2389e+000
-3.4482¢+000
=6.6567e+000
2.4668e+000
9.1542e+000
3.9371e+000
5.1583e-001
1.733%9e+001
-9.5768e+000
8.8356e+001
~3.7334e+001
-2.8350e+002
9.1583e+001
7.0397e+001
5.3619e+002
-2.0833e+002
3.0617e+002

1.9320e+002 -7.7281e+002
9.6574e+002 -2.2166e+003
1.7780e+002 1.8568e+003
2.7611e+002 -1.2763e+001
-2.7571e+003 2.7931e+003
—6.5209e+002 -1.4059e+003
4.1769e+003 -8.0485e+003



~4.0242e+001
-8.2999e+001
5.0047e+001
3.6628e+001
2.0292e+001
~-2.9365e+001
1.3305e+001
5.2796e+000
9.6136e+000
-2.9825e+000
7.7799e+000

Output Matrix (O

Columns 1 through 8
-4.9129e-001 -1.6777e+000
~1.2479e+003 —4.2612e+003
-2.8108e-001 2.7290e-001
-6.7536e+002 6.0997e+002
~8.6724e+001 1.0737e+002
-1.3163e+002 1.6654e+002

Columns 9 through 16
2.3492e-002 -9.7919e-003

5.9669e+001
2.3305e-001
2.9429e+002
-2.3902e+002
-1.4686e+002

-2.4871e+001
~4.5770e—002
-2.1017e+002
-1.9997e+002
-1.1859e+002

Columns 17 through 24

6.8441e-005 2.7959e—005
1.7384e-001 7.1015e-002
1.3494e-002 -4.6046e-003

1.2048e+001
~2.6093e+001

1.2001e+001
1.3982e+001

1.0106e+000
2.5669e+003
3.9471e-001
6.4865e+002
2.4428e+002
3.7686e+002

-2.9974e-003
-7.6131e+000
1.5725e-001
1.1318e+002
7.5933e+001
-9.5477e+001

-2.5544e-005
-6.4881e-002
-9.3297e-003
2.8103e+001
2.4720e+000

3.9960e-001 8.6711e-002
1.0150e+003 2.2024e+002
-2.2825¢-001 2.3338e-001
2.9193e+002 -3.7245e+002
-3.5595e+002 9.7773e+001
-5.1661e+002 -1.1523e+002

-1.65%94e-003 -3.0512e-004
-4.2148e+000 -7.7497e-001
-3.6590e-002 1.1981e~001
1.3377e+002 -2.2327e+001
5.9008e+000 2.4412e+001
1.1088e+002 -2.4536e+001

8.5529e-006
2.1724e-002
-2.7860e-002

3.7700e-006
9.5755e-003
2.0338e-002

4.1764e+000
2.1247-001

-9.1997e+000
8.7093e+000

9.7787e-002 6.1177¢-002
2.4837e+002 1.5539e+002
-2.3788e—001 7.4759e-002
-4, 4630e+002 —-2.3322e+002
5.3946e+001 2.41642+002
3.5849e+002 1.6224e+002

-1.3268e-004 —3.3815e-004
-3.3699e-001 -8.5889e-001
-8.6710e-002 -2.0731e-002
1.1250e4+001 —4.0763e+001
2.4104e+000 —4.9661e+001
-3.8560e+001 -5.2538e+001

3.0568e—006 —1.0090e-006
7.7642e-003 -2.5627e-003
1.2140e-002 3.5371e-002
6.6179e+000 -1.3015e+000
~4,.5938e+000 -2.3106e+000

-2.2707e+001 8.4996e+000 -8.1497e+000 ~4.0674e+000 -3.2226e+000 -5.2461e+000 1.3643e+000

Input/Output Matrix (D)

OO0 000 O0
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2.9745e-002
7.5550e+001
-3.0164e-001
-1.4993e+002
-3.1978e+001
-2.2504e+002

1.1797¢-004
2.9964e-001
2.2772e-002
4.1184e+001
-8.2561e+000
~2.7209e+001

1.7143e-006
4.3542e-003
1.2570e-002
5.8491e+000
2.1123e+000
4.6745e+000



8.3.3 Example #3: Upstream Static Temperature Perturbation

System Matrix

A

Columns 1 through 7

-5.4773e+002
-2.6103e+003
-1.3557e+003

5.9850e+002

5.2505e+002

3.7386e+002
-1.6627e+002

3.2355e+002
-4.3941e+001
-1.9198e+002
-1.4282e+002
-9.7117e+001
-2.5980e+001
-5.1688e+001

-9.4765e+002
~7.6443e+003
-6.5274e+003

2.5589e+003

2.2312e+003

1.6742e+003
~7.6274e+002

1.5186e+003
-2.0411e+002
-8.9445e+002
-6.6117e+002
-4.5023e+002
-1.2052e+002
-2.3991e+002

Columns 8 through 14

1.4456e+002
-1.5585e+001
3.8080e+002
~2.8405e+002
1.3603e+003
1.4466e+003
-5.1514e+002
-1.9820e+003
9.2321e+002
2.9877e+003
1.9517e+003
1.2074e+003
3.1452e+002

-6.8322e+000
-1.1330e+001
-2.4783e+001
-1.9611e+001
-8.5881e+000
-3.5453e+001
-5.0673e+001
-6.6605e+002
-6.1421e+001
-6.5447e+002
-4 .8029e+002
-2.7044e+002
-7.8220e+001

-1.3159¢+003
~3.4949e+003
-3.9777e+003

2.6306e+003

2.2510e+003

1.5539e+003
-6.9555e+002

1.3457e+003
-1.8335e+002
-7.9997e+002
-5.9790e+002
~4.0647e+002
-1.086%e+002
-2.1616e+002

-6.1649¢+001
2.8963e+001
-2.2621e+002
-2.4942e+002
-2.6617e+002
1.4964e+002
2.1878e+002
-1.5101e+003
1.5833e+002
-1.5888e+003
-3.1548e+003

2.8145e+002
1.3893e+003
2.7234e+002
-8.3260e+002
-1.4716e+003
-1.1411e+003
3.8866e+002
-7.8775e+002
1.1107e+002
4.9170e+002
3.5613e+002
2.4138e+002
6.4751e+001
1.2923e+002

5.4764e+001
-1.0508e+002
1.5357e+002
-1.2618e+001
4.3499e+002
3.3832e+002
1.4914e+002
-1.4721e+003
3.1780e+002
2.2868e+003

-6.3871e+001
9.3811e+002
-3.0838e+002
3.8044e+002
-1.0623e+003
-1.6532e+003
7.7891e+002
-1.6336e+003
1.8182e+002
8.1526e+002
5.7116e+002
3.9496e+002
1.0640e+002
2.1241e+002

2.8594e+001
=5.5777e+001
9.9293e+001
1.0480e+002
1.9295e+002
-1.1570e+002
-2.0211e+002
-3.8181e+002
-2.1233e+000
1.4551e+003

1.3791e+001
4.926%9e+002
7.2641e+001
5.9080e+002
1.5501e+002
-7.5777e+002
1.3802e+003
-1.7427e+003
1.8400e+002
7.5966e+002
5.6137e+002
3.9499e+002
1.0484e+002
2.0802e+002

5.0502e+000
=9.0842e+000
1.7073e+001
1.6941e+001
2.0814e+001
9.9524e+000
3.5562e+001
5.2670e+000
7.4723e+001
3.7724e+002

-2.4811e+003 1.0785e+003 -3.7628e+002
-1.8763e+003 -3.9587e+003 -2.1315¢+003 7.0014e+002
-4 .6781e+002 -7.9188e+002 —1.5270e+003 -2.7676e+002
6.2968e+002 -1.4331e+002 -8.08%4e+002 -1.9200e+003 -3.3051e+003 -2.1153e+003
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-2.0167e+001
-1.6523e+002
-3.4407e+001

1.3443e+002
-2.0183e+002
-1.1342e+003
-2.4303e+002

1.1916e+003
-1.1404e+002
-6.0394e+002
~4.2487e+002
-2.7419e+002
-7.6203e+001
-1.5136e+002

-1.1444e+00
1.4878e+001
-4 .6838e+001
-7.6210e+001
-4.2098e+001
1.1217e+002
9.3667«+001
-1.1919e+002
-1.5082e+001
-6.9642e+002
6.7691e+002
3.1153e+003
1.6835e+003
-1.8207e+003



Input Matrix (B)

8.1786e+001
2.3953e+002
1.4200e+002
-4.9812e+001
-3.8651e+001
-2.7999e+001
1.2493e+001
-2.4422¢+001
3.2879e+000
1.4382e+001
1.0647e+001
7.2464e+000
1.9392e+000
3.8595e+000

output Matrix (C)

Columns 1 through 7
-2.9112e-002 -9.5164e-002 -5.3691e-002 1.5234e-002 6.8405e-003 4.0390e~003 -1.3664e-003
-7.2484e+001 -2.3695e+002 —-1.3368e+002 3.7930e+001 1.7032e+001 1.0057e+001 -3.4021e+000
1.7052e-002 -2.7285e~002 -2.6338e-002 7.5828e-003 -1.4665¢-002 4.7672e-003
3.4465e+001 -4.5170e+001  1.1039e+000 -3.4130e+001 -1.5111e+001  8.9989e-001
3.6306e+000 ~8.5893e+000 —1.8643e+001 6.1652e+000 6.3908e+000 -4.8911e+000

-1.7623e-002
=3.7467e+001
-3.0526e+000
-4 .6859e+000

5.6910e+000

Columns 8 through 14
1.3311e-003 —1.3864e-004
3.3143e+000 -3.4519¢-001

1.0599e-002

1.2840e-002

2.0236e+001 ~4.1407e-001
-1.1297e+001 -3.1031e+000

-6.9524e+000

9.4364e-001

Input/Output Matrix (D)

O 000 oo

-1.3307e+001 -2.6338e+001 9.7084e-001 2.0338e+001

-4,.2735e-004 -1.5442e-004 -6.9801e—005 -8.6634e-006
-1.0640e+000 -3.8448e—001 -1.7380e-001 -2.1571e-002
-9.6417e-003 1.6394e—002 -1.3171e-002 1.8945e-002
-6.5572e+000 9.6731e+000 4.2186e+000 7.5051e-001
-1.0465e+001 3.3443e+000 1.1321e-001 1.7666e+000
-7.2950e+000 -2.9091e+000 5.8882e+000 ~2.7497e-001
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1.0944e+001

-1.8470e-005
-4.5987e-002
-6.4994e-003
-1.2412e+000
-1.5637¢+000
-3.3027e+000



8.3.4 Example #4: Downstream Bypass Massflow Perturbation

System Matrix

w

Columns 1 through 7

-7.2862e+001
1.8181e+002
-7.3747e+001
9.1318e+001
1.6798e+002

~1.4816e+001
-3.5460e+002

7.2077e+002
-3.8158e+002
-6.8964e+002

3.396%9e+002
-1.8758e+002
2.1726e+002
1.0060e+002
-1.3766e+002
1.7728e+002
9.1033e+001
-8.8381e+001
7.1050e+001
.6156e+000 2.5663e+001
.7755e+000 -2.7097e+001
.6920e+000 3.4767e+001
5.0738e+000 -2.0295e+001
6.0011e+000 -2.4004e+001
2.4065e+000 -9.6258e+000

-7.9063e+001

4.6237e+001
-4013e+001
.4991e+001
3.4354e+001
.4219e+001
.2718e+001
2.2121e+001
.7762e+001

Columns 8 through 14
2.3769e+001 1.7821e+001
-8.9375e+001 -7.6519e+001
4.5642¢+001 4.1413e+001
-3.8661e+002 —1.4264e+002
-7.0278e+002 2.5614e+002
5.4652e+002 —1.8643e+002
1.8997e+002 2.3646e+002
-1.6282e+003 5.0134e+002
-1.7982e+003 —6.0034e+002
2.0833e+003 1.1954e+003
-3.0748e+003 -1.7369e+003
-1.4262e+003 -9.3714e+002
1.4373e+003 1.1122e+003
-1.0983e+003 -8.6154e+002
-3.9615e+002 -3.0994e+002
4.1739e+002 3.3111e+002
-5.2635e+002 -4.1582e+002
3.0646e+002 2.4302e+002
3.6209¢+002 2.8810e+002
1.4531e+002 1.1566e+002

-6.5808e+001
-5.0998e+002
-1.2157¢+002
2.3512e+002
5.3153e+002
-2.1554e+002
1.3150e+002
.4978e+002
.9396e+001
. 5196e+001
.2221e+002
.2731e+001
. 1030e+001
~4.8965e+001
-1.7686e+001
1.8678e+001
-2.3965e+001
1.3589e+001
1.6545e+001
6.6350e+000

-2.4182e+001
6.8924e+001
-6.8860e+001
1.8415e+002
-3.4277e+002

7.2293e+001
-2.7581e+001
8.8203e+001
-3.9478e+002
-2.1557e+003
6.5952e+002
-4.1284e+002
4.6604e+002
2.0852e+002
-2.8288e+002
3.5964e+002
1.8488e+002
-1.7927e+002
1.4397e+002
5.2019e+001
=5.4946e+001
7.0566e+001
—4.1193e+001
-4.8724e+001
-1.9538e+001

1.9343e+001
-9.9790e+001
5.0870e+001
-4 .67463e+001
8.4141e+002

-8.4572e+001
2.0946e+002
-3.4760e+002
1.3419e+003
-1.8151e+003
1.8753e+003
-1.0355e+003
1.2794e+003
5.3485e+002
-7.4754e4002
9.5240e+002
4.9458e+002
~4.8586e+002
3.9284e+002
1.4212¢+002
-1.5009e+002
1.9263e+002
-1.1250e+002
-1.3308e+002
=5.3367e+001

1.0197e+001
-5.4646e+001
2.4058e+001
-3.8390e+001
3.7845e+002

1.7939e+002 —6.0736e+002 —2.9980e+002

~3.9011e+002
-2.9352¢+001

2.5346e+002
1.4913e+003

2.5167e+002
2.7333e+002

8.2947e+002 -8.3996e+002 -4.6418e+002

-2.0638e+003
8.1714e+003
2.9419e+003

-2.9201e+003
2.1730e+003
7.6995e+002

-8.3737e+002
1.0375e+003

-6.0551e+002

-7.1782e+002

-2.8847e+002

-3.375%9e+003
-4 .0484e+003
-3.1195e+003
4.1192e+003
-3.0882e+003
-1.1405e+003
1.2294e+003
-1.5634e+003
9.2083e+002
1.0969e+003
4.4059e+002

~3.4309e+002
-1.4388e+003
-1.4772e+003
3.4284e+003
~2.1206e+003
-8.4326e+002
8.8784e+002
-1.1080e+003
6.5310e+002
7.7741e+002
3.1301e+002
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-1.3995e+001 -3.2289e+001
~2.5843e+002 1.0611e+002
-2.9102¢+001 -9.3185e+001

-4.6850e+001
-2.2296e+002
-8.3574e+002

1.1710e+003
-1.2627e+003
-4 .9904e+002

7.0842e+002
-8.9109e+002
-4.6397e+002

4 .6488e+002
.7151e+002
.3458e+002
1.4251e+002
.8284e+002
1.0672e+002
1.2628e+002
5.0650e+001

.1327e+000
.9117e+001
.5027e+001
.4341e+001
-3410e+002
2.2321e+001
1.8980e+002
.6807e+002
.3589e+002
.1815e+002
.5495e+002
.3433e+002
.3805e+003
.2728e+003

1.3603e+003
~1.3427e+003

1.8552e+003
-1.1060e+003
-1.2995e+003
-5.2177e+002

2.7816e+002
7.9013e+001
=4 . 4442e+002
-6.0045e+002
1.3142e+003
5.8302e+002
-8.3503e+002
1.1224+003
5.6963e+002
-5.9050e+002
4.6648e+002
1.6895e+002
-1.7863e+002
2.2744e+002
-1.3274e+002
-1.5704e+002
-6.2999¢+001

=5.0685e+000
4.9382¢-001
-6.5985e+000
7.0387e+001
1.9899e+002
-2.1624e+002
=5.2240e+001
5.3958e+002
7.6101e+001
-2.5179e+002
-9.9536e+002
-8.2389e+002
1.4001e+003
-3.9035e+003
-3.1564¢+003
2.8905e+003
-3.9063e+003
2.2668e+003
2.6804e+003
1.0910e+003



Columns 15 through 20

-2.6993e+000 2.6520e+000
3.1795e-001 -1.2905¢+001
-4_0774e+000 5.1066e+000

3.3758e+001
5.2117e+001
~7.1597e+001
~6.7044e+001
3.1551e+002
1.9980e+001

-4.1380e+001
~7.2879e+001
1.7746e+001
1.1775e+002
-4.0479e+002
-1.4376e+002

2.4682e+001 3.6874e+002
-3.6273e+002 1.7189e+002
6.2705e+001 —6.2869e+001
9.1123e+001 ~6.9508e+002
5.8178e+002 2.0660e+002
-8.8023e+002 ~4.1039e+002
2.1594e+003 -1.3418e+003
-2.4627e+003  3.5414e+003
1.3863e+003 -2.2390e+003
1.7234e+003 -2.6635e+003
6.8404e+002 -1.0264e+003

Input Matrix (8)

-1.9921e+002
2.4238e+002
-1.2056e+002
1.3296e+002
2.2378e+002
-1.0858e+002
6.2677e+001
~7.3639e+001
-3.4077e+001
4 _6898e+001
-6.0404e+001
-3.1039e+001
3.0237e+001
~2.4283e+001
-B8.7709e+000
9.2627e+000
-1.1882e+001
6.9360e+000
8.2036e+000
3.2898e+000

5.2327e+000
-1.2583e+001
1.1608e+001
-1.4243e+001
1.5452+002
-5.0789e+001
6.4778e+00%
1.3699e+002
-2.4859¢+002
3.9867e+002
-1.1994¢+003
-6.8272e+002
2.7315e+002
5.9344e+002
3.0948e+002
-2.8785e+002
-6.4221e+003
7.4253e+003

-2.2282e+000
1.8250e+001
-4.3675e+000
1.5676e+001
~3.9221e+001
6.6667e+001
-7.7883e+001
7.0744e+001
2.0980e+002
-4.1975e+002
6.3827e+002
3.6875e+002
4.2581e+002
-4.4413e+002
4.0665e+001
1.1679e+003
1.2663e+002
-3.8285e+003

-4.1756e+000 -1.8986e+000
1.4833e+001 3.8077¢+000
-9.6485e+000 -4.2469e+000
4.3212e+001 1.7357e+001
-4.2099e+000 5.6679e-001
1.5164e+001 -1.2011e+001
-1.1734e+002 -3.5564e+001
2.9386e+002 9.3850e+001
2.3255e+002 7.6607e+001
-5.7059e+002 -1.8299+002
3.1396e+002 5.5860e+001
2.8610e+002 1.3584e+001
3.8322e+002 2.3151e+002
~8.2435e+002 -8.0448e+002
-8.5235e+002 -3.3082e+002
2.3287e+003 7.4790e+002
-2.3012e+003 2.5092e+002
1.9901e+001 -3.2729e+002

9.6920e+003 ~9.0690e+003 -8.5490e+003 6.3525e+001
3.4846e+003 -3.4685e+003 ~6.9072e+003 -1.7264e+003
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output Matrix

©)

Columns 1 through é

1.0508e+002
6.5452e+001
8.6112e+001
7.9934e+001
6.7608e+001
7.7352e+001

1.3254e+002
7.1354e+001
-1.0746e+002
-9.1433e+001
-8.0561e+001
-9.8457e+001

Columns 7 through 12

-1.0324e+001
3.3556e+001
3.2610e+001
2.8337e+001
3.6617e+000
2.8566e+001

-3.8144e+000
2.1725e+000
=4 .7076e+001
~4.6164e+001
3.1771e+00N
-6.8316e+000

Columns 13 through 18

1.4917e+001
1.2347e+000
.4954e+001
.3636e+001
1.4777e-001
1.6754e+001

5.8387e+000
-3.8888e-002
1.0568e+001
1.1599e+001
3.8576e+000
—1.7160e+001

Columns 19 through 20

6.5017e-001
-1.8077e-001
3.3582e+000
6.5039e+000
~1.4738e-001
3.6392e+000

1.0548e+000
1.7565e-001
1.5588e+000
2.4727e+000
1.0595e+000
-1.1375e-001

Input/Output Matrix (D)

O 0000 O0

6.1244e+001
6.8246e+001
1.8288e+001
4.8431e+001
3.2624e+001
4.8813e+001

-8.8503e-001

4_0676e+000
-8.9585e+000
-1.8323e+001
-1.6422e+001
-2.1407e+001

3.1386e+000
4.5765e-001

-6.2375e+001
5.3923e+000
~7.0592e+001
-8.8158e+001
6.6782e-001
~-3.1675e+001

6.9272e+000
2.9492e+000
-2.9999e+000
3.2772¢+001
1.6443e+001
2.8096e+001

9.3332e-001
-2.1187e-001

5.4539e+001
2.5375e+001
-3.4428e+001
-5.8928e+001
1.3859e+002
1.5032e+002

5.3348e+000
1.9278e+000
2.7008e+000
6.1960e—002
~3.9655e+001
=4.5130e+001

-2.1558e+000
-9.8596e-001

7.0605e+000 -4.9614e+000 -3.3612e+000

8.6036e-001
-4.0162e+000
-3.8295e-001

-7.0366e+000
3.2453e+000
-4.6959e-001

1.8270e+000
-1.0327e+001
-3.7780e+000
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6.9725e+001
3.9585e+001
1.5244e+001
3.9700e+000
-3.4581e+001
-6.2580e+001

3.9267e+000
-2.6701e-001
-7.2493e+000
3.8630e+000
-1.0309e+001
-2.7824e+001

-2.6867¢+000
~5.6599¢-001
1.9324e+000
3. 4467e+000
4.3481e+000
2.4594e+000



8.3.5 Example #5: Throat Bleed Massflow Perturbation

System Matrix

(€))

Columns 1 through 7

-1.2204e+002
2.4579e+002
8.7804e+001
3.0860e+002

-2.4681e+002
2.0504e+002
1.1931e+002
1.0570e+002
5.5624e+001

-1.7507e+002
6.4549e+001

-1.1479e+002
3.7112e+001

-5.5600e+001
4.5360e+001

-3.8666e+001
5.4859e+001

~2.0626e+001
2.1151e+001

-2.7123e+001
1.3175e+001
2.2703e+001

-1.2916e+001
2.1458e+001

-8.8465e+000

-4.1125e+000

-1
-1

.6674e+002
.9953e+002
.9804e+002
.2971e+003
.9802e+002
.6763e+002
.9374e+002
.5305e+002
.1942e+002
.6924e+002
.4112e+002
.5023e+002
.0129e+001

1.1803e+002
-9.6161e+001

8.2981e+001
.1742e+002

4.4168e+001
~4_.5258e+001
.8042e+001
.8224e+001
—4 .8629e+001

2.7666e+001
-4.5955e+001

1.8944e+001

8.8071e+000

Columns 8 through 14

6.5572e+001
1.7566e+002
2.2332e+001
-5.7389e+001
-4.7453e+002
1.1185e+003
4.3043e+002
-5.7127e+002
-1.0079e+003
2.9831e+003
-6.4046e+002
1.1374e+003
-3.7016e+002
6.2305e+002
-5.1023e+002
4.0168e+002

-2.6498e+001
2.3695e+001
~3.076%9e+001
-1.393%9e+002
2.8140e+001
4.5342e+002
1.6859e+002
5.7596e+002
-1.9490e+002
2.4603e+003
-4.7503e+002
1.0248e+003
-2.9645e+002
4.5078e+002
-3.3171e+002
2.6454e+002

-1

.3600e+001
.304%e+002
.5368e+001
.9909e+002
.4949e+002
.5149e+002
.1724e+002
.1001e+002
.0725e+001
.7001e+002
.3791e+001
.1513e+002
. 7309e+001
.5511e+001
. 4624e+001
. 7949e+001
.3869e+001
.0272e+001
.0834e+001
.6726e+001
.2983e+001
.2375e+001
.2725e+001
.1141+001
.7156e+000
.0518e+000

.9850e+001
.9961e+001
.8031e+000
.3258e+002
.9557e+002
.7275e+002
.6456e+003
.0115e+003
.5954e+003
.5383e+003
.0060e+003
.5921e+003
.2969e+003
.6634e+003
.2989¢+003
.1424e+003

-1.5762e+002
1.0684e+003
2.8981e+002

-6.2832e+002
2.0492e+003

-1.4227e+003

-6.4234e+002

-4 .9303e+002

-2.3577e+002
7.5028e+002

-2.8150e+002
5.4683e+002

-1.7424e+002
2.6084e+002

-2.1089e+002
1.7863e+002

-2.5375e+002
9.5502e+001

-9.8241e+001
1.2594e+002

-6.1173e+001

~1.0538e+002
5.9919e+001

-9.9535e+001
4.1036e+001
1.9078e+001

-1.0315e+001
6.2509e+001
6.1656e+000

-2.1571e+002

-2.3135e+002
5.0433e+002
2.5440e+002

-8.3627e+001
2.8668e+001

-1.4404e+003

-4.4910e+002
2.4449e+003

-5.6100e+002
9.0706e+002

-7.0332e+002
5.1673e+002

1.2908e+002
-2.2272e+001
-5.1233e+001
-1.6598e+003
~7.4911e+002
1.7417e+003
7.6960e+002
8.5180e+002
3.5317e+002
-1.2896e+003
4.5278e+002
~7.7736e+002
2.4642e+002
-3.6792e+002
2.9555e+002
-2.5283e+002
3.5775e+002
-1.3500e+002
1.3844e+002
-1.7770e+002
8.6412e+001
1.4895e+002
-8.4728e+001
1.4080e+002
-5.8038e+001
-2.6979¢+001

-1.1142e+002
-8.8871e+001
~3.4738e+001
-2.5567e+002
2.8033e+002
2.4234e+001
1.5164e+002
3.8441e+002
-7.0129e+002
3.2243e+003
-1.7316e+003
-3.0384e+003
2.4284e+003
~3.8926e+003
3.1531e+003
-2.2449e+003
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-1.5879e+001
-2.6847e+002

1.673%e+002

1.2601e+003
-6.3801e+002
-9.3524e+002
-2.8925e+003
.5161e+003
-6.608%e+002

1.8527e+003
-6.9615e+002

1.0614e+003
-3.4164e+002

4.9090e+002
-4.0593e+002

3.5965e+002
.0664e+002
1.9038e+002
.9365e+002
2.4B842e+002
.2100e+002
-2.0854e+002

1.1873e+002
.9719e+002
8.1279e+001
3.7783e+001

.4570e+001
.7967e+001
.7881e+001
.1053e+001
-4 .3904e+001
~1.0581e+001
-6.1401e+001

wnn =N

-1.4893e+002

1.5540e+002
-7.8533e+002

2.6862e+001
1.8565e+002
-9.2451e+000
2.9168e+002
5.3221e+001
2.4437e+003
—4.5408e+002
-1.0880e+003
~4.9133e+002
1.9039e+003
-5.5533e+002
8.4778e+002
~2.7362e+002
4.3914e+002
-3.5103e+002
2.8697e+002
-4 .0866e+002
1.5390e+002
-1.5862e+002
2.0375e+002
-9.8666e+001
-1.7014e+002
9.6789e+001
-1.6100e+002
6.6369e+001
3.0846e+001

-5.2243e+000
7.8702e+001
-4.3008e+001
-1.3599e+002
8.7873e+001
3.7128e+002
-2.9456e+002
-3.1772e+002
-3.5242e+002
1.7060e+002

1.2144e+002 -5.0130e+002

-6.7270e+002
-4. 479N e+002

2.6950e+003
-1.8814e+003
1.0673e+003

1.7871e+003
-1.7516e+003
-1.2872e+003
2.2144e+003
-2.6234e+003



-5.8232¢+002
2.1907e+002
-2.2444e+002
2.8737e+002
-1.3885e+002
~2.3933e+002
1.3597e+002
-2.2605e+002
9.3219e+001
4.3311e+001

~3.8072e+002
1.4539e+002
-1.5117e+002
1.9392e+002
~9.4226e+001
-1.6234e+002
9.1965e+001
-1.5278e+002
6.2961e+001
2.9267e+001

Columns 15 through 21

-2.5227e+001
-8.7031e+001
1.5140e+000
6.2512e+001
6.3292e+001
-2.7820e+002
2.3102e+002
4 .2866e+002
9.2173e+001
1.9893e+002
4.1171e+002
-2.1451e+003
1.5384e+003
-1.7889e+002
-1.2824+003
3.7239e+003
-3.7479e+003
1.2697e+003
-1.1175e+003
1.4403e+003
~7.6316e+002
-1.3057e+003
7.4981e+002
-1.2191e+003
5.0000e+002
2.3366e+002

1.2369e+001
-4 .7962e+001
2.2278e+00
9.1611e+001
=5.7457e+001
-2.5198e+002
1.1442e+002
1.3721e+002
1.9749e+002
1.5788e+002
2.5719e+002
1.1785e+003
-5.2808e+002
2.4707e+003
-3.0203e+003
-1.8385e+003
5.4761e+003
-2.2144e+003
2.2792e+003
-2.8774e+003
1.2991e+003
2.2707e+003
-1.1943e+003
2.0453e+003
-8.4625e+002
-3.9218e+002

Columns 22 through 26

1.0590e+001
1.3647e+001
1.0530e+001
7.0386e+001
-7.9240e+000
-2.7914e+001
-5.6761e+001
3.3886e+001

-2.4664e+000
-2.0880e+001
-1.5763e+000
-6.1859e+000
4.0208e+000
-5.6274e+001
4.6772e+001
3.2060e+001

1.6093e+003 -7.5407e+002 3.2640e+003 -1.4901e+003

-6.0016e+002
6.2519e+002
-7.9868e+002
3.8898e+002
6.6780e+002
-3.7905e+002
6.2764e+002
~-2.5879e+002
-1.2043e+002

~4.2181e+001
1.5207e+001
-2.8648e+001
~9.0457e+001
1.9320e+002
2.2138e+002
-1.2264e+002
1.6342e+002
-2.2486e+002
-8.5667e+001
-1.5873e+002
-2.7151e+003
8.4958e+002
-2.3692e+003
1.6307e+003
-3.3676e+002
-4 .7630e+003
3.5303e+003
-3.944%9e+003
5.0913e+003
-2.4646e+003
-4.1831e+003
2.2027e+003
-3.7655e+003
1.5395e+003
7.2007e+002

2.0753e+000
2.1398e+001
2.5537e+000
-2.7115e+001
-1.1056e+002
8.6491e+001
6.5658e+001
9.4838e+000

2.8920e+002
-3.0022e+002
3.8233e+002
-1.8532e+002
-3.1848e+002
1.8008e+002
-2.9927e+002
1.2344e+002
5.7381e+001

1.0671e+001
~7.0619e+000
1.3187e+001
3.7293e+001
-3.8944e+001
=9.9944e+001
5.4808e+001
=9.0207e+001
4.6194e+001
-9.6399e+001
-3.0778e+001
6.2794e+002
-2.8582e+002
7.1133e+002
-3.7706e+002
4.7560e+002
7.7830e+001
-9.8495e+002
2.8808e+003
-3.7307e+003
1.4627e+003
2.3202e+003
~1.2456e+003
2.0641e+003
-8.3907e+002
-3.9753e+002

2.4740e+000
1.5232e-001
-1.5201e+000
1.5425e+001
3.6899e+001
-2.0243e+001
-4 .0798e+001
-4.1909e+001

-1.1433e+003
1.1238e+003
-1.4420e+003
6.8205e+002
1.1799e+003
-6.7683e+002
1.1258e+003
—4.6477e+002
-2.1560e+002

-7.6251e+000
-2.1756e+001
-5.2153e-003
7.1989e+001
8.5190e+001
-1.2204e+002
1.6232e+000
1.5091e+002
4.8195e+001
-3.1129e+002
2.0494e+002
-2.7240e+002
2.1773e+002
2.0023e+002
-5.6501e+002
-9.5283e+002
7.4546e+002
~1.6306e+003
-1.9644e+003
4.0649e+003
-2.4796e+003
~4.3439e+003
2.5227e+003
~4 . 1480e+003
1.6702e+003
7.7834e+002

-2.8947e+000
-3.8347e+000
-3.0766e+000
-8.4227e-001

1.6730e+001
-4.5675e+000
-1.1941e+000

2.5848e+001
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5.3535e+002
-5.2431e+002
6.6630e+002
-3.1519e+002
-5.3941e+002
3.0904e+002
~5.1674e+002
2.1290e+002
9.8642¢+001

9.7250e+000
2.7996e+001
-6.3224e+000
-8.2440e+001
-6.7704e+001
1.5948e+002
=5.6220e+001
-1.7507e+002
-7.5009e+001
2.7480e+002
-1.7696e+002
4.1777e+002
-2.244e+002
~4 . 8649e+002
7.6846e+002
1.2093e+003
-1.1931e+003
2.4646e+003
1.1105e+003
-3.6857e+003
4.1698e+003
6.6576e+003
-3.7088e+003
5.9438e+003
-2.4201e+003
-1.1313e+003

3.1579e+003
-1.0819e+003
9.5974e+002
-1.2147e+003
6.1031e+002
1.0416e+003
-6.0340e+002
9.9245e+002
-4 .0862e+002
-1.9015e+002

5.3717e+000
9.2904e+000
2.3227e+000
4. 4465e+001
1.1684e+001
=1.8405¢+001
=4.0510e+001
7.3656e+000
5.7439e+001
-2.9310e+002
1.0184e+002
3.2503e+002
-3.7285e+001
=9.4093¢+000
2.0909e+002
-2.8779e+002
8.5909e+002
-6.8694e+002
5.6267e+001
-9.1696e+002
-1.3567e+003
-3.6677e+003
2.3290e+003
~4.4143e+003
1.8904e+003
8.3913e+002



1.3560e+002
-3.9183e+002
1.6141e+002
5.6878e+002
-2.1905e+002
2.4632e+002
3.4522e+002
-9.9426e+002
1.6561e+003
-7.2219e+002
3.1737e+002
~1.0763e+003
-1.4317e+003
~5.7232e+003
6.5920e+003
~1.0861e+004
4.5117e+003
2.0084e+003

-1.8267e+001
1.7628e+002
2.9841e+001

~7.4304e+001
7.6061e+001
2.3267e+002

~4.9736e+002
~4.8293e+002
4.5792e+002
8.5087e+001

-4.8061e+002
6.7759e+002
7.2591e+002

-1.2454e+002

-2.8614e+003
9.9609e+003

-4.1752e+003

5.7429e+001
2.6943e+002
-7.0527e+001
4.6739e+001
1.0105e+002
.1932e+001
1.9579e+002
.9496e+001
.7133e+002
.0377e+002
.2589e+003
.5911e+002
.9250e+001
1.3250e+002
-9.0516e+002

1

.1075e+001 -1.3014e+001
.8949e+002  1.1490e+001

.2381e+001  2.1168e+001
.5579e+002 -1.1560e+002

.2793e+001  7.9765e+007
.2941e+002 -5.1059e+001

.2262e+002 ~1.3326e+002

.4833e+002 8.4856e+001
.7303e+001 -3.9795e+002
.8091e+002 2.3859e+002
.1073e+002 -3.9227e+002
.0883e+002 3.2370e+002
.9555e+002 1.1932e+002
.1690e+002 7.0526e+002
.0092e+003 -5.0397e+002

-1.5774e+004  4.4744e+003  5.6350e+002

1.0744e+004

-5

.3019e+003  3.1974e+003

—1.7506e+003 5.8865e+003 -6.7250e+003 -2.0406e+003

Input Matrix (B)

-2.4037e+002
1.8351e+002
7.0707e+001
2.6677e+002

-2.2492e+002
2.0050e+002
1.1924e+002
1.0681e+002
5.3954e+001

-1.7074e+002
6.3374e+001

-1.1403e+002
3.6701e+001

-5.4779e+001
4.4588e+001

-3.8057e+001
5.3971e+001

-2.0303e+001
2.0825e+001

-2.6706e+001
1.2976e+001
2.2360e+001

-1.2719e+001
2.1131e+001

-8.7118e+000

-4.0500e+000
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Output Matrix

©

Columns 1 through 7

3.0505e+001
1.5579e+002
6.5869e+001
1.2068e+002
7.3142e+001
9.1236e+001

-6.5875e+001
5.5421e+001
-2.4503e+001
~3.7302e+001
9.9222e+001
1.2012e+002

Columns 8 through 14

-3.8166e+001
-3.985%e+001

3.5594e+001
-1.8685e+001
-6.5918e+001
~4.9010e+001

-2.5756e+001
2.3583e+001
2.0339e+001
2.9043e+001

-2.0413e+001

-4.1983e+000

Columns 15 through 21

-2.3781e+000
1.1323e+001
-1.0332e+001
8.3326e-001
2.0620e+001

~4.1113e+000
-1.6576e+001
-1.5811e+001
-1.5839e+001

2.2637e+001

-8.7394e+000
2.7211e+001
~2.2642e+001
5.2595e+001
-3.0018e+001
-1.6531e+000

2.5250e+001
7.0783e+001
=5.3962¢+001
-1.1834e+002
-5.0734e+001
-6.3358e+001

1.2207e+001
4 .1264e+001
1.6235e+001
2.5961e+001
-2.9667e—001

3.6354e+001  1.1974e+001 -1.1110e+001

Columns 22 through 26
-4.0692e+000 -5.1593e-001

Input/Output Matrix (D)

o0 0000

-5.5885e¢+001
=5.3916e+001
1.3577e+002
2.1236e+002
-2.0219e+001
-3.4558e+001

~7.8352e+000
-1.2150e+001
5.6480e+001
1.9432e+001
-1.1715e+001
-1.0121e+001

-2.8528e+000
-7.9378e+000

4.6995e+000
-1.5061e+001
~5.5393e+000

3.3035e+001
-2.1185e+002
4.9109e+001
4.2892e+001
-4 .5510e+000
1.8608e+001

1.2615e+001
6.4873e+001
5.4349e+001
5.6581e+001
3.7915e+001
3.2304e+001

8.5243e+000
1.2625e+001
~7.2824e+000
-7.3850e+000
8.9550e-001

-4.0881e+001
3.7076e+001
-5.5824e+001
-1.3374e+002
6.1225e+001
1.1138e+002

-6.0444€+000
-1.1345e+001
8.1780e+000
-2.4905e+001
6.6175e+000
-2.1232e+001

-1.3199e+001
-1.1570e+001
1.7956e+000
1.1559e+001
~1.6495e+000

4.9231e-001
4.6370e+001
-3.5948e+001
=1.4565e+001
~3.4054e+001
=9.6961e+001

=1.2070e+000
1.6531e+001
2.4220e+000
2.9471e+001
-3.2401e+001
-2.8316e+001

8.6559e+000
5.5765e-001
-5.4218e+000
-6.6411e+000
-4.0159e+000

7.8393e+000 9.6571e+000 -1.6297e+001 -1.8738e+000

1.4963e+001 -9.5835¢+000 1.4722e+001
4.0358e+000 2.7466e+000 -3.8064e+000 -5.5925¢-001 -1.3082e+001
-1.4032e+000 -1.5962e+000 -7.9722e+000 -2.6423¢+000 2.9358e+000
~4.0166e+000 2.0386e+000 -1.1587e+001 2.1054e+000 6.2389e+000
-4.6068e¢+000 9.7055e-002 3.0720e+000 3.9048e+000 -1.5866e+000
-1.9299e+000 1.3708e+000 -7.3702e+000 6.5548e+000 2.9289e+000
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